Outbreak Investigation Basics

Outline

- Definitions
- Epidemic Curve
- Outbreak Investigation Steps
 - Descriptive epi
 - Calculation of RR and OR

Definitions I

- Outbreak- more cases in a time and place (or population) than expected.
- Epidemic- same as outbreak or more widespread/prolonged, more political
- Cluster- a group of cases in a certain place and time suspected to be greater than expected.

Definitions II

- Vehicle- non-living intermediary (food, water, fomite)
- Vector- living intermediary (insect, arthropod): mechanical or biological transmission (part of life cycle)
- Reservoir- habitat where the agent grows and multiplies (humans, animals, environment)

Definitions III

- Modes of transmission
 - Direct:
 - Direct contact (mucous membranes, skin, fecal-oral)
 - Droplet spread
 - Indirect:
 - Airborne
 - Vehicle borne- food, water or fomite
 - Vectorborne- arthropod
- Portals of Entry- ingestion, inhalation, percutaneous

Epidemic Curve

- X axis- time (of onset, of exposure)
- Y axis- number of cases
- No gap between data points (X axis is continuous)
- X axis unit= ¼ as long as the incubation period
- Each box usually= 1 case

Epidemic Curve

- Magnitude over time
- Shape: point source vs propagated
- Evaluation of intervention
- Outliers recognized

Outbreak Investigation Caveats

- No set list
- No set order
- Many steps are dynamic: case-definition, line listings, descriptive epi, hypotheses
- Keep A LIST to double check in the midst of an outbreak

Steps 1 and 2: Outbreak Exists and Confirmation

- 1)Existence of an outbreak
 - Increase- specific disease or condition in a specific timeframe and/or location:
 - Clinical symptoms- viral meningitis in CCC in 1 month
 - Serotyping can help- Salmonella Saphra in CA in 1 month
 DNA fingerprinting can help
 - E. coli O157 in N. Calif. in 1 month (pulsed field gel electrophoresis)
 - TB in a prison in 3 mos (restriction fragment length polymorphism)
- 2)Confirm diagnosis
 - Lab: culture, PCR, serology
 - Examples- shigella, norovirus, viral meningitis/legionellosis
 - Radiology/Expert Opinion- clinical TB in children

Step 3: Define and Count Cases

- 3A)Define cases (case definition): practical, reliable, apply without bias
 - Example: viral meningitis
 - Fever, headache x 2 days, and stiff neck
 - MD dx AND LP with >5 WBCs and no bacterial growth.
 - Example: E. coli O157 at Restaurant X on 3/31
 - Confirmed: culture positive with "outbreak" PFGE pattern and ate food purchased from restaurant X on 3/31
 - Probable: bloody diarrhea and ate food purchased at restaurant X during on 3/31
 - Possible: diarrhea (3 loose stools per day) and ate food purchased at restaurant X on 3/31

Step 3: Continued

- Case Definition may need to be updated within an investigation
 - Broad to specific
 - Infection with E. coli O157 vs. infection with the outbreak strain (defined by PFGE pattern)
 - Location of exposure
 - SARS outbreak (travel within 10 d of onset):
 - In February: China/HK/Hanoi/Singapore
 - In April: Toronto, Canada added
 - In May: Taiwan added
 - Dates of exposure can change
 - SARS outbreak: to meet the case definition-dates of exposure dependant on location of exposure

Step 3: Continued

- 3B) Count Cases
 - Case Finding: encourage testing
 - If asymptomatic may need serology to find infected (eg, legionellosis, viral meningitis)
 - Press release, email to attendees, hospital/clinic alert
 - Example: Cyclospora in a wedding party
 - Collect:
 - Demographics (age, sex, race, residence, occupation)
 - Symptoms and date of onset
 - Laboratory data
 - Isolates for further testing (eg, DNA fingerprinting)
 - Line listing (Excel spreadsheet)

Step 4: Orient the Data (Descriptive Epidemiology)

- 4A)Orient data by time (epi curve: # cases [Y axis] vs. onset date/time[X axis])
 - Point source outbreak: mean onset date minus incubation period (if known)= exposure date
 - Example: textbook
 - Ongoing transmission (often person to person)
 - Example: shigellosis in Lexington

Step 4: Orient the Data

- 4A)Orient data by time (epi curve: # cases [Y axis] vs. onset date[X axis])
 - Point source outbreak: mean onset date minus incubation period= exposure date
 - Example: textbook
 - Ongoing transmission
 - Example: shigellosis in Lexington

Step 4: Orient the Data

- 4A)Orient data by time (epi curve: # cases [Y axis] vs. onset date[X axis])
 - Point source outbreak: mean onset date minus incubation period= exposure date
 - Example: textbook
 - Ongoing transmission
 - Example: shigellosis in Lexington

Step 4: Orient the Data

- 4B)Orient data by place: location in city, hospital, prison
 - Example: TB in a prison

Step 4: Orient the Data

- 4C)Orient data by person:
 - Age group
 - Example: Salmonella, young adults, and marijuana
 - Sex
 - Example: Salmonella, women, and alfalfa sprouts
 - Ethnicity
 - Example: Salmonella, Latinos, and cheese

Step 5: Determine who is at risk

- 5)Determine who is at risk:
 - Common exposure/event: Salmonella and Obon Festival

Step 6: Hypothesis Generation

- 6A)Generate Hypotheses
 - Indepth interviews:
 - Example: TB outbreak:day room vs. TV in own cell
 - Example: foodborne outbreak in restaurant: use menu, hypothesis generation with 5-10 patients: garnishes (not on menu)
 - Example: foodborne outbreak multicounty: >70 food item questionnaire and open-ended
 - Usually generates an outbreak specific profile
 - Examples: deli restaurants, Mexican restaurants, spring break in NY/Chicago/Europe

Step 6: Test Hypothesis

- 6B) Test hypothesis:
 - Cohort study
 - Defined group: wedding party, reside on a unit
 - Compare exposed persons with non exposed persons
 - Calculate attack rates in exposed and compare with attack rate in unexposed (relative risk)
 - Case control study
 - Compare ill persons with well persons
 - Calculate odds of eating item X and compare odds of ill vs well (odds ratio)

Attack Rate Ratio Relative Risk/Risk Ratio

- 1) calculate attack rate for exposed ARexp=(A/A+B)
- 2) calculate attack rate for unexposed
 AR unexp=(C/C+D)
- 3) Calculate RR RR= ARexp/ARunexp = (A/A+B)/(C/C+D)

	III	Not III
Exposed/ ate	Α	В
Unexposed/ did not eat	С	D

Format for Reporting: Cohort Study

Odds Ratio Calculation

- 1) calculate odds of exposure for ill
 Odds ill=(A/C)
- 2) calculate odds of exposure for not ill Odds not ill=(B/D)
- 3) Calculate OR
 - = Odds ill/Odds not ill = (A/C)/(B/D)
 - =AD/BC

	III	Not III
Exposed/ ate	Α	В
Unexposed/ did not eat	С	D

Format for Reporting: Case-Control Study

Step 7: Compare the Hypothesis with with Facts

- 7)Compare hypothesis with facts
 - Does the implicated cause fit with the biology of the disease?
 - Example: SE and sandwiches (mayonnaise from eggs)
 - Can the food item be tested?
 - Example: SE and sandwiches (test eggs)
 - Does the implicated item trace to the same source?
 - Example: Salmonella -cantaloupe several distributors but 1 grower in Mexico
 - Example: SE and residence near I80-
 - chicken eaten out (several brands) vs.
 - mung bean sprouts (one sprout grower)

Step 8 – Conduct a More Systematic Study

- 8)More systematic study (if needed)
 - Extent of illness: example Obon SE outbreak
 - Risk factors for infection: serosurvey viral mening.
 - Knowledge/Attitudes/Behavior survey: sprout consumption among women

Step 9: Write a Report

- 9)Written report purposes
 - Action (control and prevention)
 - Record of performance
 - Medical/Legal issues
 - Enhances quality of the investigation

Step 9A: Report the Report

- Report from local health jurisdiction to CDHS
- Forms for reporting
 - Foodborne- use CDC form: 52.13
 - Waterborne- use CDC form: 52.12
 - Norovirus- use DHS "Other Outbreak" form: 8554
 - Forms are on the IDB website: www.dhs.ca.gov/ps/dcdc/html/publicat.htm

Publications----CD Case Report Forms

Attach narrative report and tables showing epidemiologic associations

Step 10: Control and Prevention Last but NOT Least

- 10)Control and prevention
 - Specifics depend on the disease
 - Initiate reasonable and generic control measures as soon as possible (eg, time/temperature, handwashing, isolation, exclusion)
 - Do NOT delay control measures in order to investigate the cause of the outbreak
 - Continue control measures while investigating the possible cause