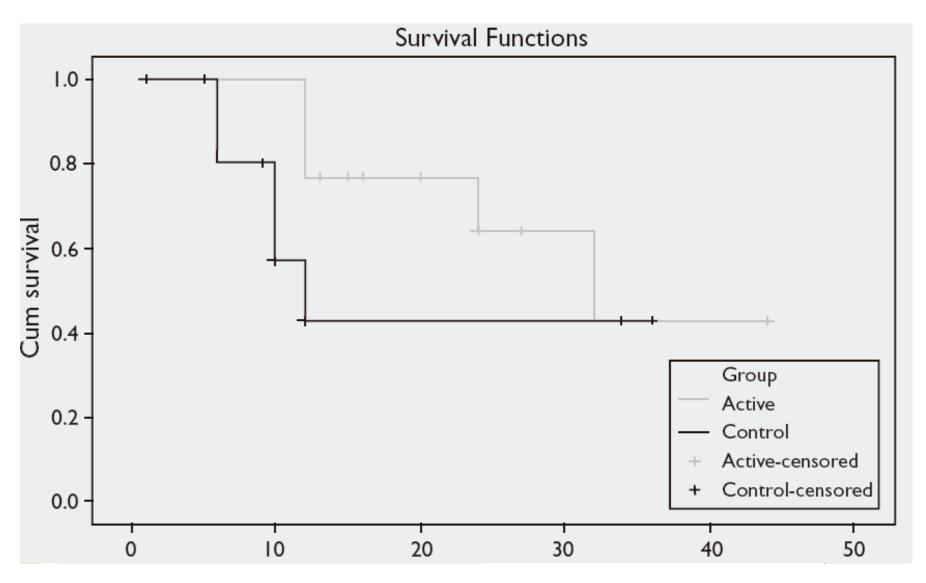
Kaplan-Meier

- Kaplan Meier can be used to compare two or more treatment groups on their survival times.
- Duration is measured from a well-defined time origin until the occurrence of some particular event of interest or end-point.
- Kaplan-Meier is the usual technique performed to analyse survival-time data.
- The Kaplan Meier technique is the univariate version of survival analysis.

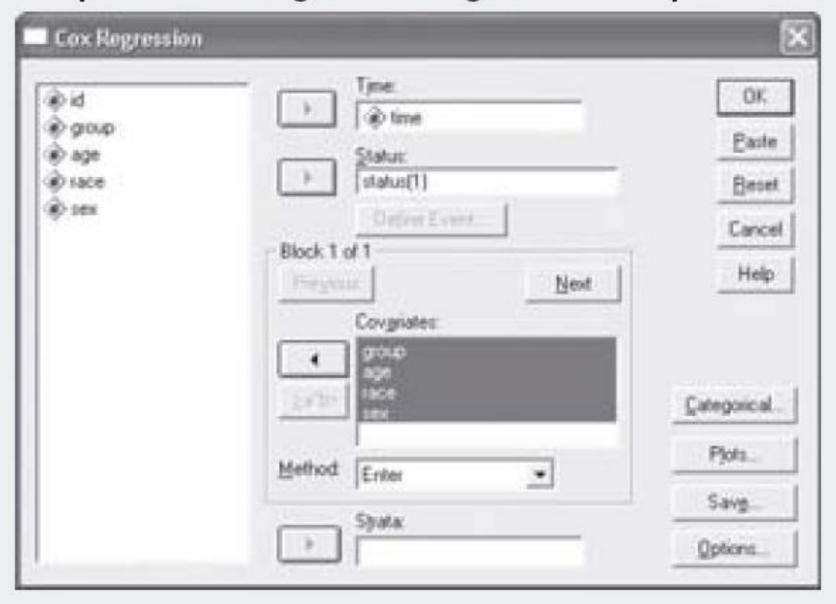

Example

- 25 lung cancer patients :
- 1#, 5#, 6, 6, 9#, 10, 10, 10#, 12, 12, 12, 12, 12, 12, 12#, 13#, 15#, 16#, 20#, 24, 24#, 27#, 32, 34#, 36#, 36#, 44# months
- variable "Status" tells which case is censored (denoted by 0) and which case is an event (dying of lung-cancer, denoted by 1).

Sample result

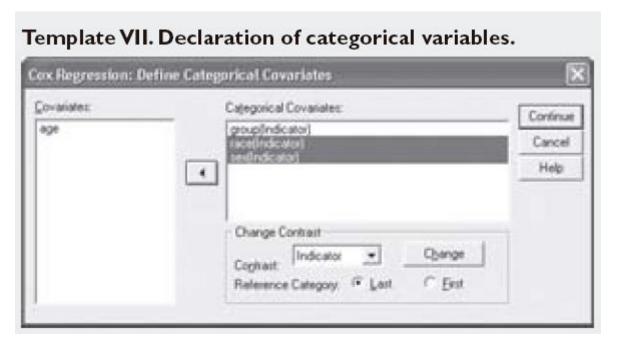
Factor group	= control			
	Survival time	Standard error		5% confidence interval
Mean (Limited to 36	21	5		(12, 30)
Median	12	2		(7, 17)
Factor group	= active			
	Survival time	Standard	error 9	5% confidence interval
Mean (Limited to 44	31	4		(23, 39)
Median	32	8		(17, 47)
	Total	Number of events	Number censored	
Group contro	l 12	5	7	58.33
Group active	13	5	8	61.54
Overall	25	10	15	60.00
Test statistics	for equality of	f survival dist	tributions f	or group
	Statistic	df		Significance
Log rank	1.77	ı		.1835

Sample Plot

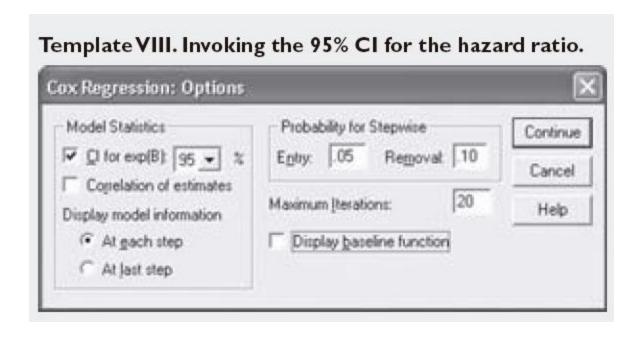

Cox Regression

YH Chan

Cox Regression


- to look at a confounder model to determine whether the groups differ after adjusting for confounding factors such as differences of demographics.
- To perform a Cox regression, go to
 - Analyse,
 - Survival,
 - Cox regression.

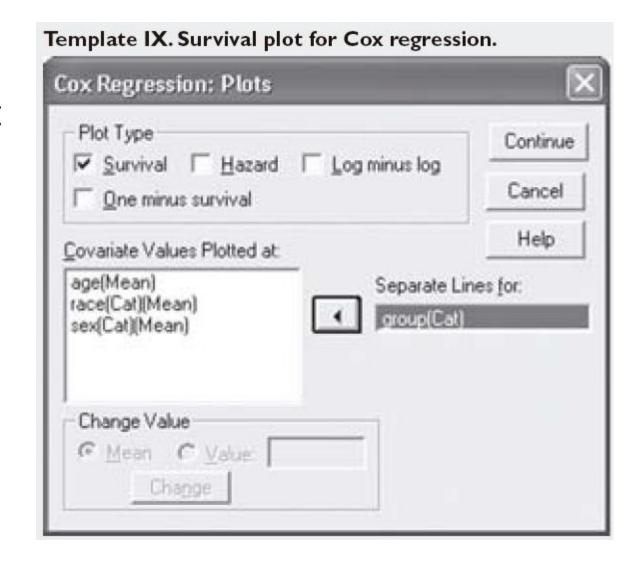
Template VI. Cox regression: lung cancer example.


Categorical Variables

- The declaration for the categorical variables is similar to logistic regression by clicking on the "Categorical" button. The group with the longer survival time would be the reference group.
- In this example, we put group, race and sex as the categorical covariates.

hazard ratio

 Click on "Options" to invoke the 95% CI for the hazard ratio (HR), given by the expression exp(B)



hazard ratio

- The interpretation for the hazard ratio is similar to that of the odds ratio.
 - A value of one means there is no differences between two groups in having a "shorter time to event".
 - A HR >1 means that the group of interest comparing to the reference group (based on the categorical declaration) likely have a shorter time to event.
 - A HR <1 means that the group of interest less likely to have a shorter time to event.

Plots

- Click on "Plots" to get the following requester.
- Click on "Survival" and choose Separate Lines for "group".

Results

• The reference category for group is active, race is "other race" and sex is female.

Table V	Table VIa. Categorical definition.							
Categorical variable codings								
Frequency (I) (2) (3)								
Group	1.00=control	12	1					
	2.00=active	13	0					
Race	I=chinese	15	- 1	0	0			
	2=indian	5	0	1	0			
	3=malay	2	0	0	1			
	4=other	3	0	0	0			
Sex	I=male	17	1					
	2=female	8	0					

Results

- The table gives the p-values (Sig) and the hazard ratios (Exp(B)) of the variables.
- We have to check for multi-collinearity by observing whether the SE of all the variables are small

Table VIb. Estimates of variables in Cox regression.

Table VID. Esti	Table VID. Escillaces of Variables III Cox regression.											
	V ariables in the equation											
							95.0% C	95.0% CI for Exp(B)				
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper				
Group	1.841	.911	4.086	1	.043	6.302	1.058	37.550				
Sex	3.670	1.435	6.542	1	.011	39.263	2.358	653.769				
Age	.115	.043	7.137	1	.008	1.122	1.031	1.220				
Race			2.066	3	.559							
Race(I)	307	1.181	.068	1	.795	.735	.073	7.448				
Race(2)	.983	1.299	.573	1	.449	2.672	.210	34.060				
Race(3)	.907	1.469	.381	1	.537	2.476	.139	44.085				

Results

- Since adjusting for confounder model, our interest is only in the variable "group".
- p-value for Cox-Regression is 0.043 (statistically significant) compared to the earlier Kaplan Meier analysis (log-rank p=0.1835).
- The HR is 6.302 (95% CI 1.058 37.55), comparing the control with the active, the control is likely to have a shorter time to event and in this example, the event is death.
- Why Cox is different with Kaplan-Meier?

Table VIb. Estimates of variables						
	В	Sig.				
Group	1.841	.043				
Sex	3.670	.011				
Age	.115	.008				
Race		.559				
Race(I)	307	.795				
Race(2)	.983	.449				
Race(3)	.907	.537				

Why? Confounder?

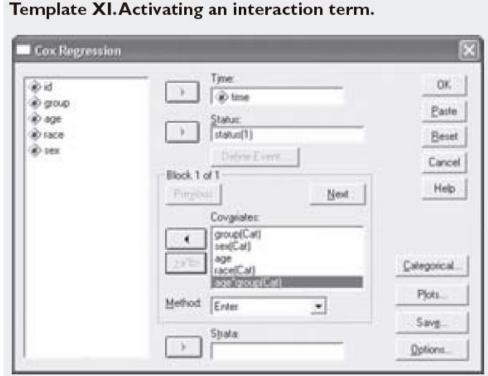
- Statistical differences noted for gender and age.
- Men and older people were worse off.
- Cross-tab -> more men than women in control group (p = 0.673)
- Mean age is higher in the active group.

Table VIc. Cross-tabulation between group and gender.

The sex of the patient * group cross-tabulation

			Gr	oup	
			Control	Active	Total
Sex of patient	Male	Count % within group	9 75.0%	8 61.5%	17 68.0%
	Female	Count % within group	3 25.0%	5 38.5%	8 32.0%
Total		Count % within group	12 100.0%	13 100.0%	25 100.0%

Table VId. Age differences between group (p=0.737).


Group statistics									
	Group	Ν	Mean	Std. deviation	Std. error mean				
Age	active	13	31.6923	16.16263	4.48271				
	control	12	29.5833	14.73683	4.25416				

Therefore!

- Don't stop at the univariate analysis but to always perform a multivariate analysis to identify the real situation!
- How about interaction between gender and "group", or age and "group"? How to test for it?

How to test for interaction?

 Within Cox Regression, select both age and "group" at the same time by pressing the "Ctrl" key. The button ">a*b>" becomes "enabled", so click on it. Repeat the same for gender and "group".

	В	SE	Wald	df	Sig.
Group	-5.524	4.891	1.276	1	.259
Sex	1.687	1.716	.966	1	.326
Age	.082	.055	2.186	1	.139
Race			3.171	3	.366
Race(I)	869	1.341	.420	1	.517
Race(2)	1.112	1.261	.777	1	.378
Race(3)	1.018	1.570	.421	1	.517
Age*group	.121	.089	1.823	1	.177
Group*sex	5.584	3.261	2.933	1	.087

 none of the interaction terms are significant. This implies that regardless of age or gender, the active group is performing better.

Exercise

- Open breast cancer survival dataset from SPSS.
- Variables of interest;
 - age
 - categorical histology grade,
 - oestrogen receptor status,
 - progesterone receptor status,
 - pathological tumour size and
 - lymph node status.
- to determine the predictors for a shorter survival time to death.

Kaplan-Meier

- Do a Kaplan-Meier analysis for all these variables first;
 - age
 - categorical histology grade,
 - oestrogen receptor status,
 - progesterone receptor status,
 - pathological tumour size and
 - lymph node status.
- Identify which variables are significant and explain the biological plausibility.

Based on your earlier results, are these coding correct?

		Frequency	(1)	(2)
histgrad	1=1	56	0	0
	2=2	352	I	0
	3=3	252	0	- 1
cr	0=negative	262	0	
	I=positive	398	1	
pr	0=negative	299	0	
	I=positive	361	1	
pathscat	I=<=2cm	457	0	0
	2=2-5cm	196	1	0
	3=>5cm	7	0	- 1
ln_yesno	0=no	485	0	
	I=yes	175	1	

- Reference group;
 - histology grade is grade 1
 - for er, pr and lymph node is negative
 - and tumour size is ≤2cm.
- Do the Cox regression, first without controlling for interaction, then repeat but controlling for interaction.

Discuss this result

	В	SE	Wald	df	Sig.
Age	021	.014	2.200	1	.138
histgrad			.872	2	.647
histgrad(1)	.778	1.036	.564	1	.453
histgrad(2)	.942	1.056	.796	1	.972
cr	022	.432	.003	1	.959
pr	455	.422	1.159	1	.282
pathscat			6.005	2	.050
pathscat(I)	.638	.336	3.614	1	.057
pathscat(2)	1.484	.776	3.658	1	.056
ln_yesno	.724	.337	4.605	I	.032

Variables in the Equation

							95.0% CI	for Exp(B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
age	021	.014	2.200	1	.138	.980	.953	1.007
pathscat			6.005	2	.050			
pathscat(1)	.638	.336	3.614	1	.057	1.893	.980	3.657
pathscat(2)	1.484	.776	3.658	1	.056	4.412	.964	20.200
ln_yesno	.724	.337	4.605	1	.032	2.063	1.065	3.997
histgrad			.872	2	.647			
histgrad(1)	.778	1.036	.564	1	.453	2.177	.286	16.587
histgrad(2)	.942	1.056	.796	1	.372	2.564	.324	20.300
er	.022	.432	.003	1	.959	1.022	.438	2.385
pr	.455	.422	1.159	1	.282	1.576	.689	3.605

Discussion

- Those with a positive lymph node more likely to have a shorter time to death (HR = 2.06, 95% CI 1.07 - 4.0, p = 0.032). Tumour size is "just off statistical significance".
- Should we conclude that only women with a positive lymph node are at a higher risk?
- What happens if we include a lymph node * tumor size interaction?

lymph node * tumor size interaction

	В	SE	Wald	df	Sig.
Age	023	.014	2.845	ı	.092
histgrad			1.165	2	.559
histgrad(I)	1.047	1.067	.962	1	.327
histgrad(2)	1.161	1.081	1.153	I	.283
cr	063	.424	.022	1	.881
pr	516	.413	1.556	1	.212
pathscat			8.520	2	.014
pathscat(I)	179	.501	.128	1	.721
pathscat(2)	3.100	1.102	7.904	1	.005
In_yesno	.006	.505	.000	1	.990
In_yesno*pathscat			8.564	2	.014
In_yesno*pathscat(I)	1.670	.707	5.574	1	.018
In_yesno*pathscat(2)	-1.847	1.547	1.425	I	.233

Variables in the Equation

							95.0% CI	for Exp(B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
age	023	.014	2.845	1	.092	.977	.951	1.004
pathscat			8.520	2	.014			
pathscat(1)	179	.501	.128	1	.721	.836	.313	2.233
pathscat(2)	3.100	1.102	7.904	1	.005	22.189	2.557	192.566
ln_yesno	.006	.505	.000	1	.990	1.006	.374	2.706
histgrad			1.165	2	.559			
histgrad(1)	1.047	1.067	.962	1	.327	2.848	.352	23.068
histgrad(2)	1.161	1.081	1.153	1	.283	3.192	.384	26.563
er	.063	.424	.022	1	.881	1.065	.464	2.447
pr	.516	.413	1.556	1	.212	1.675	.745	3.766
In_yesno*pathscat			8.564	2	.014			
In_yesno*pathscat(1)	1.670	.707	5.574	1	.018	5.312	1.328	21.248
In_yesno*pathscat(2)	-1.847	1.547	1.425	1	.233	.158	.008	3.274

lymph node * tumor size interaction

- lymph node status is no more statistically significant but tumour size and their interaction are.
- Regardless of the lymph node status, subjects with tumour size >5cm are at risk (HR=22.19, 95% CI 2.56 192.57, p=0.005) and for subjects with tumour size 2 5cm, they are at a higher risk if they have a positive lymph node (HR=5.31, 95% CI 1.33 21.25, p=0.018).