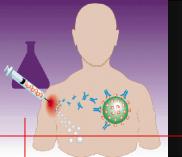


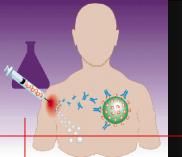
Summarise

- Summarise a large set of data by a few meaningful numbers.
- Single variable analysis
 - For the purpose of describing the data
 - Example; in one year, what kind of cases are treated by the Psychiatric Dept?
 - Tables & diagrams are usually used to describe the data
 - For numerical data, measures of central tendency
 & spread is usually used

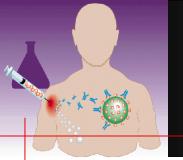


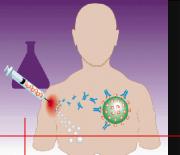
Measurement of Central Tendency & Spread

Measures of Central Tendency


- Mean
- Mode
- Median

Measures of Variability

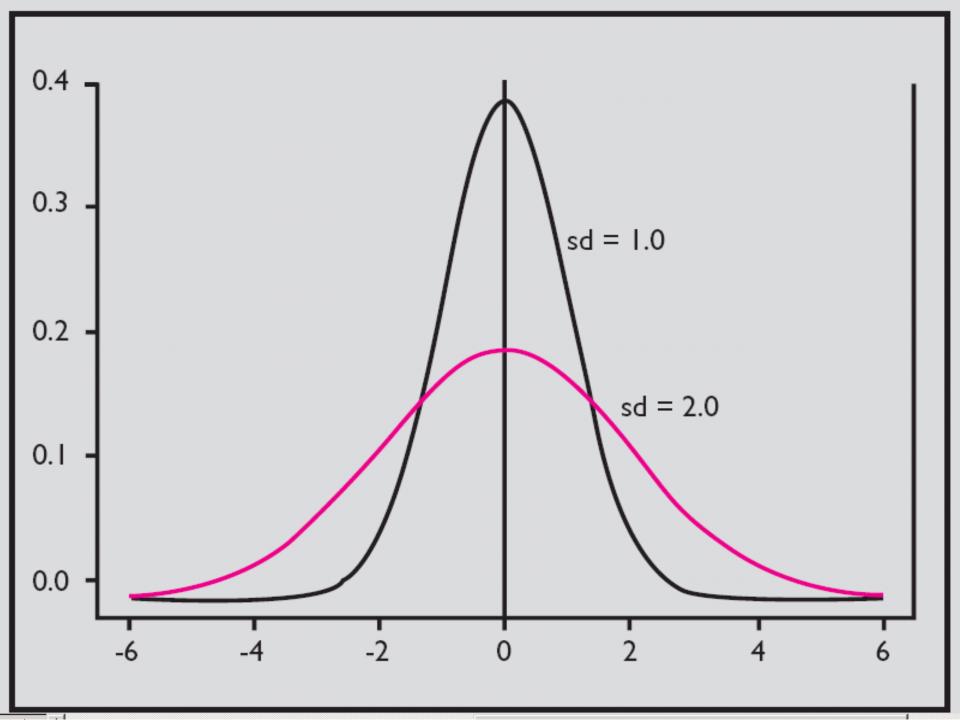

- Standard deviation
- Inter-quartiles
- Skew ness & kurtosis

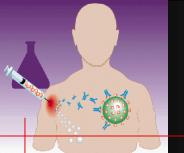

- the average of the data collected
- To calculate the mean, add up the observed values and divide by the number of them.
- A major disadvantage of the mean is that it is sensitive to outlying points

$$\bar{x} = \frac{(\Sigma x)}{n}$$

Mean: Example

- 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58
- \blacktriangleright Total of x = 648
- n= 20
- Mean = 648/20 = 32.4

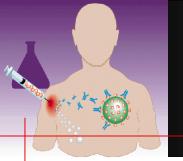



Measures of variation - standard deviation

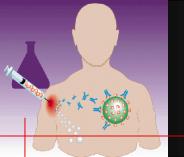
- tells us how much all the scores in a dataset cluster around the mean. A large S.D. is indicative of a more varied data scores.
- a summary measure of the differences of each observation from the mean.
- If the differences themselves were added up, the positive would exactly balance the negative and so their sum would be zero.
- Consequently the squares of the differences are added.

Variance =
$$\frac{\sum (x - \bar{x})^2}{n-1}$$

$$SD = \sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}$$

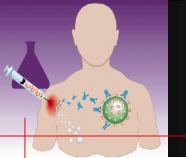


sd: Example

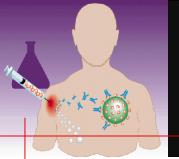

- 12, 13, 17, 21, 24, 24,26, 27, 27, 30, 32, 35,37, 38, 41, 43, 44, 46,53, 58
- Mean = 32.4; n = 20
- Total of $(x-mean)^2$ = 3050.8
- Variance = 3050.8/19 = 160.5684
- \rightarrow sd = 160.5684^{0.5}=12.67

Х	(x-mean)^2	X	(x-mean)^2
12	416.16	32	0.16
13	376.36	35	6.76
17	237.16	37	21.16
21	129.96	38	31.36
24	70.56	41	73.96
24	70.56	43	112.36
26	40.96	44	134.56
27	29.16	46	184.96
27	29.16	53	424.36
30	5.76	58	655.36
TOTAL	1405.8	TOTAL	1645

Median

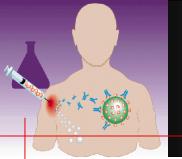


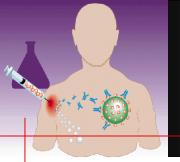
- the ranked value that lies in the middle of the data
- the point which has the property that half the data are greater than it, and half the data are less than it.
- if n is even, average the n/2th largest and the n/2 + 1th largest observations
- "robust" to outliers


Median:

- 12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58
- $(20+1)/2 = 10^{th}$ which is 30, 11^{th} is 32
- ▶ Therefore median is (30 + 32)/2 = 31

Measures of variation - quartiles


- The range is very susceptible to what are known as outliers
- A more robust approach is to divide the distribution of the data into four, and find the points below which are 25%, 50% and 75% of the distribution. These are known as *quartiles*, and the median is the second quartile.


Quartiles

- 12, 13, 17, 21, 24,24, 26, 27, 27, 30,32, 35, 37, 38, 41,43, 44, 46, 53, 58
- ▶ 25th percentile 24; (24+24)/2
- ▶ 50th percentile 31; (30+32)/2; = median
- ▶ 75th percentile 42; (41+43)/2
- median 31(24;42)

Mode

- The most frequent occurring number. E.g. 3, 13, 13, 20, 22, 25: mode = 13.
- It is usually more informative to quote the mode accompanied by the percentage of times it happened; e.g., the mode is 13 with 33% of the occurrences.

Mode: Example

12, 13, 17, 21, 24, 24, 26, 27, 27, 30, 32, 35, 37, 38, 41, 43, 44, 46, 53, 58

Modes are 24 (10%) & 27 (10%)

Mean or Median?

- Which measure of central tendency should we use?
- if the distribution is normal, the mean±sd will be the measure to be presented, otherwise the median±IQR should be more appropriate. (i.e. 31(24;42))
- IQR = 75th centile − 25th centile
 (i.e. 42 − 24 = 18)

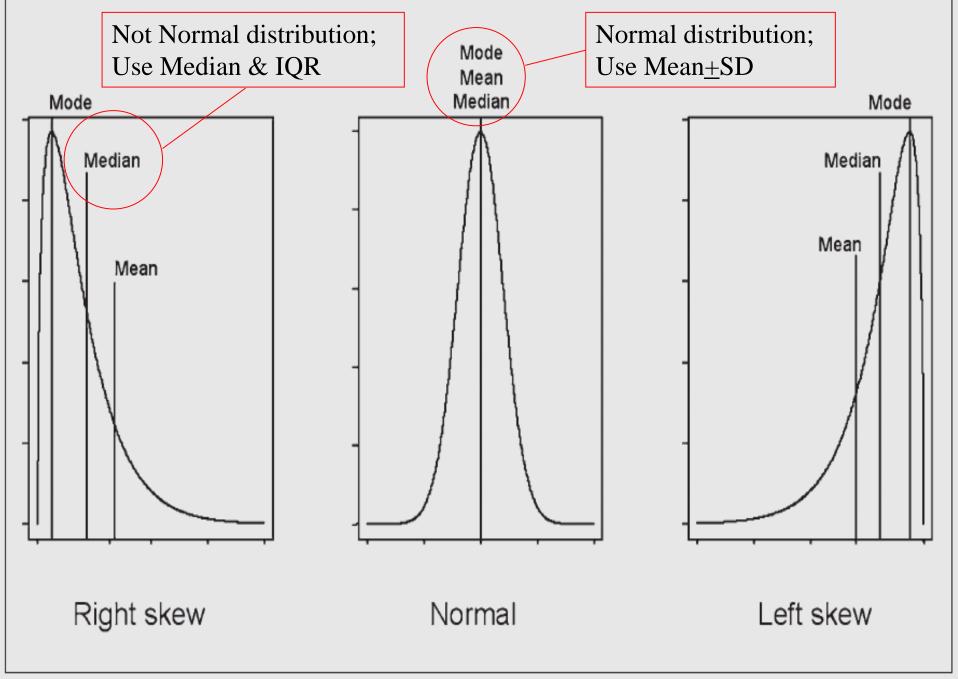


Fig. 2 Distributions of Quantitative Data.