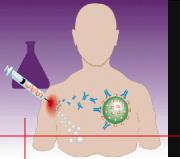
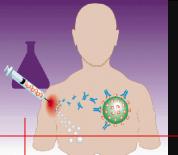


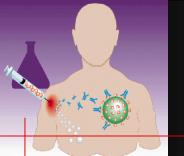
Research Week 2016


Basic Hypothesis Testing

Assoc. Prof. Dr Azmi Mohd Tamil Dept of Community Health Universiti Kebangsaan Malaysia



- Concept introduced by Jerzy Neyman & Egon Pearson in 1928.
- What does it mean to have a nonsignificant result in a significance test?
- Can we conclude that a hypothesis is true if we have failed to refute it?


- In many situations, hypothesis tests are used against a null hypothesis that is the straw man.
- For instance, when two drugs are being compared in a clinical trial, the null hypothesis to be tested is that the two drugs produce the same effect.
- However, if that were true, then the study would never have been run.
- The null hypothesis that the two treatments are the same is the straw man, meant to be knocked down by the results of the study.

e.g. Drug to prevent recurrence of cancer

- Drug vs Placebo
- We expect if the drug is really effective, after 5 years the rate of recurrence of cancer is lower among treatment group (e.g. 0%) vs placebo group (e.g. 50%).

Study with 8 samples

	Relapse	Cured	
Treatment	0 (0%)	4	4
Placebo	2 (50%)	2	4
	2	6	8

Chi-Squares P-values

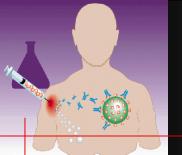
Uncorrected : 2.67 0.1024704 Mantel-Haenszel: 2.33 0.1266305 Yates corrected: 0.67 0.4142162

Fisher exact: 1-tailed P-value: 0.2142857

2-tailed P-value: 0.4285714

An expected cell value is less than 5. Fisher exact results recommended.

Null hypothesis:


There is no difference of relapse rate between the two treatment regimes.

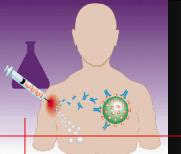
Result: p>0.05

Conclusion: Null

hypothesis not

rejected.

Study with 16 samples


	Relapse	Cured	
Treatment	0 (0%)	8	8
Placebo	4 (50%)	4	8
	4	12	16

	Chi-Squares	P-values
Uncorrected : Mantel-Haenszel: Yates corrected: Fisher exact: 1-ta 2-ta	3.00	

An expected cell value is less than 5. Fisher exact results recommended.

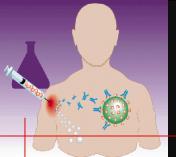
- Null hypothesis:
 There is no
 difference of
 relapse rate
 between the two
 treatment regimes.
- **Result**: p>0.05
- Conclusion: Null hypothesis not rejected.
- But p value improving

Study with 32 samples

	Relapse	Cured	
Treatment	0 (0%)	16	16
Placebo	8 (50%)	8	16
	8	24	32

Chi-Squares P-values Uncorrected : 10.67 0.0010908 ◀── Mantel-Haenszel: 10.33 0.0013065 ◀── Yates corrected: 8.17 0.0042667 ◀── Fisher exact: 1-tailed P-value: 0.0012236 ◀── 2-tailed P-value: 0.0024472 ◀── An expected cell value is less than 5.

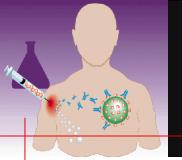
Fisher exact results recommended.


Null hypothesis:

There is no difference of relapse rate between the two treatment regimes.

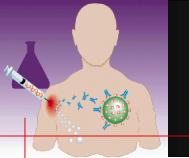
Result: p<0.05

Conclusion: Null hypothesis rejected.


Treatment has a significant effect on the outcome. The straw man is finally knocked down.

Drug A versus Drug B

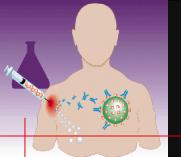
Hypothesis Testing



Inferential Statistic

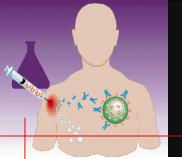
When we conduct a study, we want to make an inference from the data collected. For example;

"drug A is better than drug B in treating disease D"



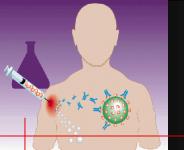
Is Drug A Better Than Drug B?

- Drug A has a higher rate of cure than drug B. (Cured/Not Cured)
- If for controlling BP, the mean of BP drop for drug A is larger than drug B. (continuous data mm Hg)

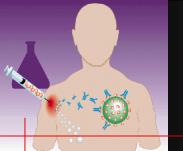


Null Hypothesis or H0

Null Hyphotesis;

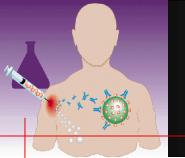

"no difference of effectiveness between drug A and drug B in treating disease D"

Null Hypothesis

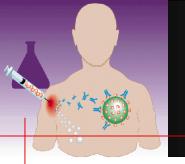

- ► H0 is assumed TRUE unless data indicate otherwise:
 - The experiment is trying to reject the null hypothesis (the straw man)
 - Can reject, but cannot prove, a hypothesis
 - e.g. "all swans are white"
 - » One black swan suffices to reject
 - » H0 "Not all swans are white"
 - » No number of white swans can prove the hypothesis since the next swan could still be black.

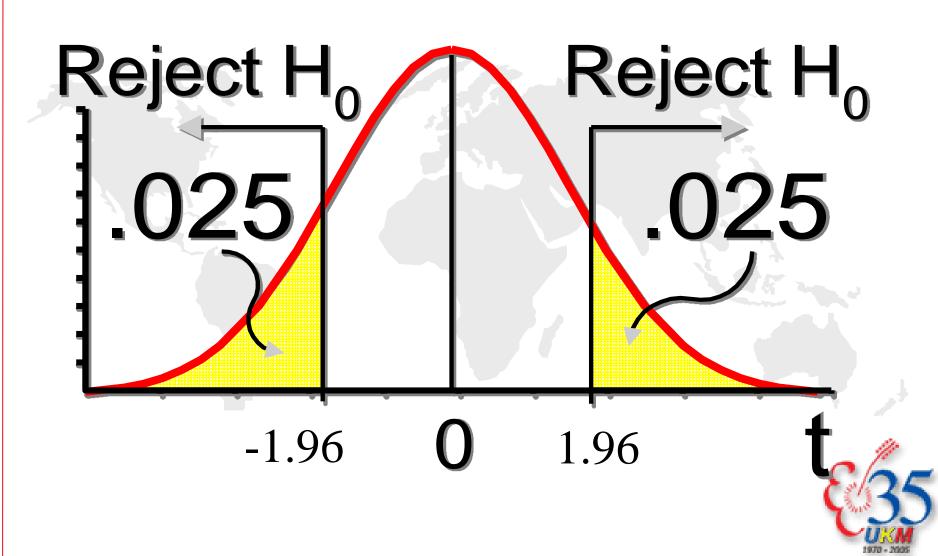
Can reindeer fly?

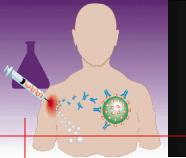
- You believe reindeer can fly
- Null hypothesis: "reindeer cannot fly"
- Experimental design: to throw reindeer off the roof
- Implementation: they all go splat on the ground
- Evaluation: null hypothesis not rejected
 - This does not prove reindeer cannot fly: what you have shown is that
 - "from this roof, on this day, under these weather conditions, these particular reindeer either could not, or chose not to, fly"
- It is possible, in principle, to reject the null hypothesis
 - By exhibiting a flying reindeer!



Significance

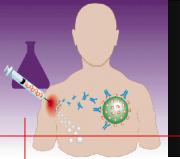

- Inferential statistics determine whether a significant difference of effectiveness exist between drug A and drug B.
- If there is a significant difference (p<0.05), then the null hypothesis would be rejected.
- Otherwise, if no significant difference (p>0.05), then the null hypothesis would not be rejected.
- The usual level of significance utilised to reject or not reject the null hypothesis are either 0.05 or 0.01. In the above example, it was set at 0.05.




Confidence interval

- Confidence interval = 1 level of significance.
- If the level of significance is 0.05, then the confidence interval is 95%.
- CI = 1 0.05 = 0.95 = 95%
- If CI = 99%, then level of significance is 0.01.

What is level of significance? Chance?

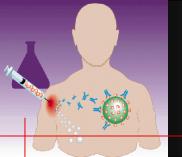


Fisher's Use of p-Values

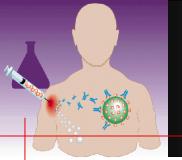
- R.A. Fisher referred to the probability to declare significance as "p-value".
- It is a common practice to judge a result significant, if it is of such magnitude that it would be produced by chance not more frequently than once in 20 trials."
- 1/20=0.05. If p-value less than 0.05, then the probability of the effect detected were due to chance is less than 5%.
- We would be 95% confident that the effect detected is due to real effect, not due to chance.
- If p < 0.001? Then the probability that the effect detected were due to chance is less than 1 per 1,000 trials!

- Although we have determined the level of significance and confidence interval, there is still a chance of error.
- There are 2 types;
 - Type I Error
 - Type II Error

Error

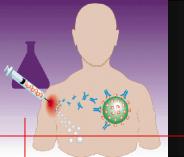

	REALITY				
DECISION	Treatments are not different	Treatments are different			
Conclude treatments are	Correct Decision	Type II error β error			
not different	(Cell a)	(Cell b)			
Conclude treatments are	Type I error α error	Correct Decision			
different	(Cell c)	(Cell d)			

Error


		Incorrect Null
Test of	Correct Null Hypothesis	Hypothesis
Significance	(Ho not rejected)	(Ho rejected)
Null Hypothesis		
Not Rejected	Correct Conclusion	Type II Error
Null Hypothesis		
Rejected	Type I Error	Correct Conclusion

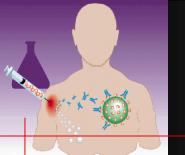
Type I Error

- Type I Error rejecting the null hypothesis although the null hypothesis is correct e.g.
- when we compare the mean/proportion of the 2 groups, the difference is small but the difference is found to be significant.
 Therefore the null hypothesis is rejected.
- It may occur due to inappropriate choice of alpha (level of significance).


Example of a Type I Error

Multiple comparisons

When we are comparing between 2 treatments A & B with a 5% significance level, the chance of a true negative in this test is 0.95. But when we perform A vs B and A vs C (in a three treatment study), then the probability that neither test will give a significant result when there is no real difference is 0.95 x 0.95 = 0.90; which means the type 1 error has increased to 10%.


Number of comparisons	1	2	3	4	5	6	7	8	9	10
Probability of false positive	5%	10%	14%	19%	23%	27%	30%	34%	37%	40%

Type II Error

- Type II Error not rejecting the null hypothesis although the null hypothesis is wrong
- e.g. when we compare the mean/proportion of the 2 groups, the difference is big but the difference is not significant. Therefore the null hypothesis is not rejected.
- It may occur when the sample size is too small.

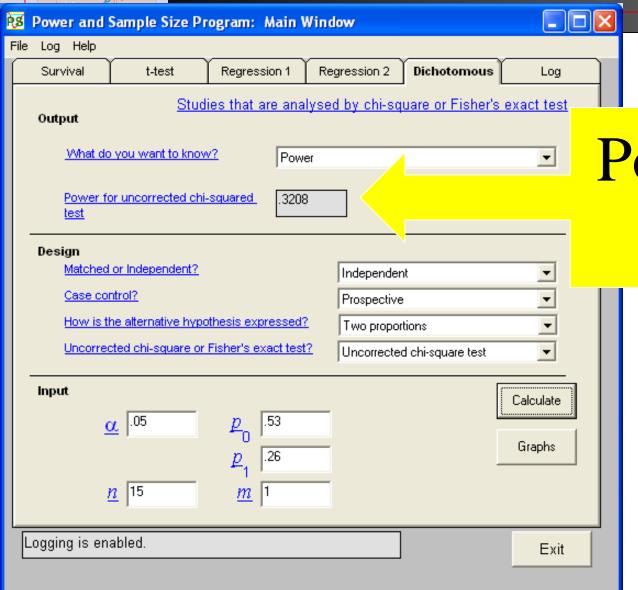
Example of Type II Error

Data of a clinical trial on 30 patients on comparison of pain control between two modes of treatment.

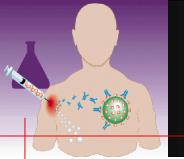
Type of treatment * Pain (2 hrs post-op) Crosstabulation

			Pain (2 hrs post-op)		
			No pain	In pain	Total
Type of treatment	Pethidine	Count	8	7	15
		% w ithin Type of treatment	53.3%	46.7%	100.0%
	Cocktail	Count	4	11	15
		% w ithin Type of treatment	26.7%	73.3%	100.0%
Total		Count	12	18	30
		% w ithin Type of treatment	40.0%	60.0%	100.0%

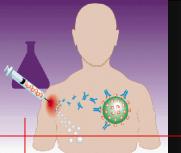
Chi-square = 2.222, p=0.136

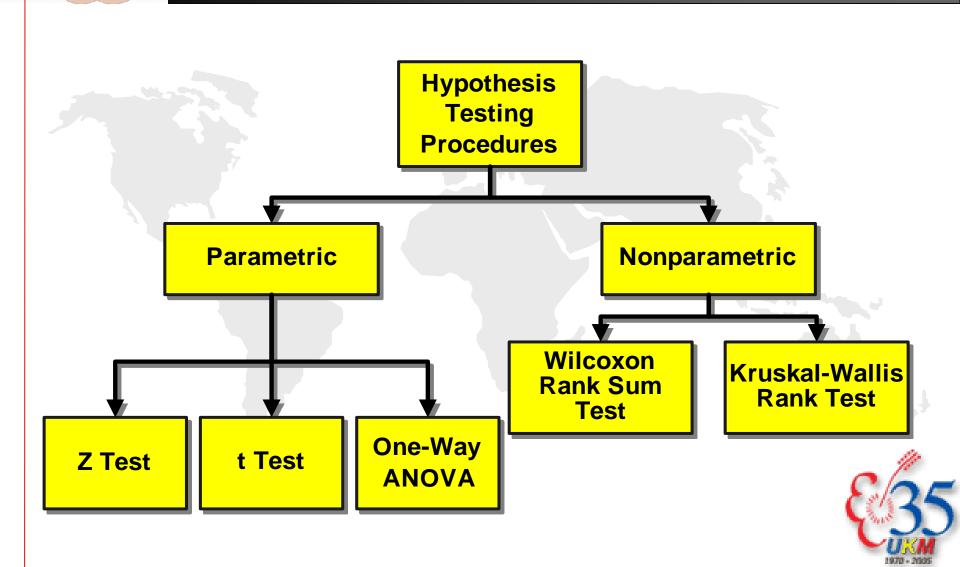

p = 0.136. p bigger than 0.05. No significant difference and the null hypothesis was not rejected.

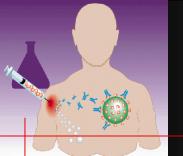
There was a large difference between the rates but were not significant. Type II Error?



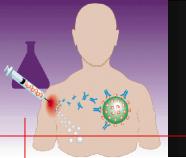
Not significant since power of the study is less than 80%.


Power is only 32%!


Check for the errors

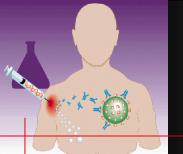

- You can check for type II errors of your own data analysis by checking for the power of the respective analysis
- This can easily be done by utilising software such as Power & Sample Size (PS2) from the website of the Vanderbilt University

Hypothesis Testing Procedures



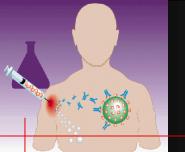
Parametric Analysis – Quantitative

Qualitative Dichotomus	Quantitative	Normally distributed data	Student's t Test
Qualitative Polinomial	Quantitative	Normally distributed data	ANOVA
Quantitative	Quantitative	Repeated measurement of the same individual & item (e.g. Hb level before & after treatment). Normally distributed data	Paired t Test
Quantitative - continous	Quantitative - continous	Normally distributed data	Pearson Correlation & Linear Regresssion



non-parametric tests

Variable 1	Variable 2	Criteria	Type of Test
Qualitative	Qualitative	Sample size < 20 or (< 40 but	Fisher Test
Dichotomus	Dichotomus	with at least one expected	
		value < 5)	
Qualitative	Quantitative	Data not normally distributed	Wilcoxon Rank Sum
Dichotomus			Test or U Mann-
			Whitney Test
Qualitative	Quantitative	Data not normally distributed	Kruskal-Wallis One
Polinomial			Way ANOVA Test
Quantitative	Quantitative	Repeated measurement of the	Wilcoxon Rank Sign
		same individual & item	Test
Quantitative -	Quantitative -	Data not normally distributed	Spearman/Kendall
continous	continous		Rank Correlation



Statistical Tests - Qualitative

Variable 1	Variable 2	Criteria	Type of Test
Qualitative	Qualitative	Sample size ≥ 20 dan no	Chi Square Test (X ²)
		expected value < 5	. ,
Qualitative	Qualitative	Sample size > 30	Proportionate Test
Dichotomus	Dichotomus		
Qualitative	Qualitative	Sample size > 40 but with at	X ² Test with Yates
Dichotomus	Dichotomus	least one expected value < 5	Correction
Qualitative	Qualitative	Sample size < 20 or (< 40 but	Fisher Test
Dichotomus	Dichotomus	with at least one expected	
		value < 5)	

Take Home Message

Use the tables to decide on what type of analysis to use.

Qualitative Dichotomus	Quantitative	Normally distributed data	Student's t Test
Qualitative Polinomial	Quantitative	Normally distributed data	ANOVA
Quantitative	Quantitative	Repeated measurement of the same individual & item (e.g. Hb level before & after treatment). Normally distributed data	Paired t Test
Quantitative - continous	Quantitative - continous	Normally distributed data	Pearson Correlation & Linear Regresssion