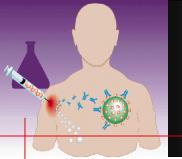


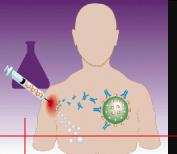
Research Week 2015

T Test, ANOVA

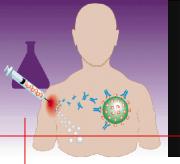
Assoc. Prof. Dr Azmi Mohd Tamil Dept of Community Health Universiti Kebangsaan Malaysia



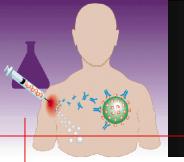
Independent T-Test Student's T-Test


Paired T-Test

ANOVA


Student's T-test

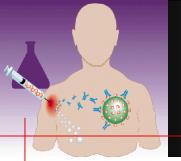
William Sealy Gosset @ "Student", 1908. The Probable Error of Mean. Biometrika.


Student's T-Test

To compare the means of two independent groups. For example; comparing the mean Hb between cases and controls. 2 variables are involved here, one quantitative (i.e. Hb) and the other a dichotomous qualitative variable (i.e. case/control).

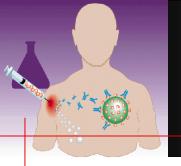
Examples: Student's t-test

- Comparing the level of blood cholestrol (mg/dL) between the hypertensive and normotensive.
- Comparing the HAMD score of two groups of psychiatric patients treated with two different types of drugs (i.e. Fluoxetine & Sertraline


Example

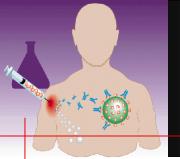
Group Statistics

	DRUG	N	Mean	Std. Deviation
DHAMAWK6	F	35	4.2571	3.12808
	S	32	3.8125	4.39529

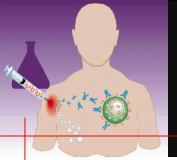

Independent Samples Test

		t-test for Equality of Means				
				Sig.	Mean	
		t	df	(2-tailed)	Difference	
DHAMAWK6	Equal variances assumed	.48	65	.633	.4446	

Assumptions of T test


- Observations are normally distributed in each population. (Explore)
- The population variances are equal. (Levene's Test)
- The 2 groups are independent of each other. (Design of study)

Manual Calculation


Sample size > 30

Small sample size, equal variance

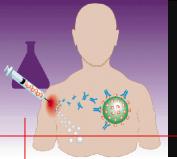
Implication

- We expect better improvement among the treated group, compared to the control group. The better the improvement, the larger is the mean difference between the two groups.
- The larger the difference, the more significant is the p value.

Significance

- The bigger the mean difference, the bigger is the t value, therefore the smaller is the p value, therefore more likely to be significant.
- The smaller the variance, the smaller is the p value.

Example – compare cholesterol level

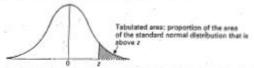

Hypertensive: Normal:

Mean: 214.92 Mean: 182.19

s.d.: 39.22 s.d.: 37.26

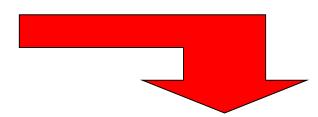
n:64 n:36

- Comparing the cholesterol level between hypertensive and normal patients.
- The difference is (214.92 182.19) = 32.73 mg%.
- *H0*: There is no difference of cholesterol level between hypertensive and normal patients.
 - n > 30, (64+36=100), therefore use the first formula.


Calculation

$$t = \frac{(214.92 - 182.19)}{((39.22^2/64) + (37.26^2/36))^{0.5}}$$

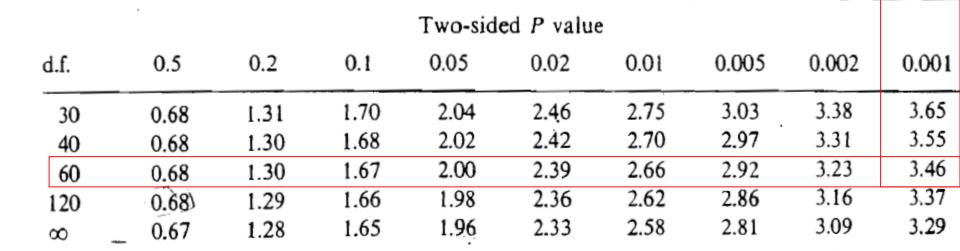
- t = 4.137
- df = $n_1 + n_2 2 = 64 + 36 2 = 98$
- Refer to t table; with t = 4.137, p < 0.001</p>


Table A1 Areas in tail of the standard normal distribution

Adapted from Table 3 of White at al. (1975) with prominion of the authors and publishers.

						Second dec	ecimal place of a				
•		0.00	0.01	0.02	683	0.04	0.05	0.06	0.07	0.00	0.09
60		0.5000	0.4969	9.4920	0.4880	0.4840	0.4901	0.4761	0.4721	0.4681	0.464
1.0		0.4682	0.4562	0.4133	0.4453	0.4443	0.440#	0.4364	6.4325	0.4256	0.404
62		0.4297	0.4168	0.4129	0.4000	0.4052	0.4083	0.3974	0.3936	0.3897	0.385
63		0.3821	0.3763	0.3745	9.3797	0.3669	9.3631	9.3594	0.3557	9.3529	0.348
84		0.3446	0.3420	8.3372	0.3334	9.3300	0.3264	0.3226	0.3192	0.3156	0.312
0.5		0.3065	0.3050	9.5015	0.2911	0.2546	0.2912	0.2677	0.2645	0.2810	9,2774
0.6		9.2743	6.2709	0.2676	0.2643	0.2611	0.2578	0.2546	8.2514	62463	03/5
0.7		0.2420	0.2389	0.2358	0.2127	0.2296	0.2266	0.2236	6.2304	9.2177	9.2141
0.8		9.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	6.0922	9.1894	9.1861
0.9		0.1641	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.168
1.0		0.1587	0.1562	0.1539	0.1315	0.1492	0.1469	0.1440	0.1423	0.1401	0.1375
1.1		0.1157	0.1335	0.1314	0.1292	0.1271	0.2251	0.1230	0.1210	0.1190	0.1170
1.2		0.8658	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1002	0.099.5
13		0.0968	0.0951	0.0934	0.0918	0.0901	0.088.5	0.0869	0.0853	0.0638	0.0823
IA		0.0808	0.0793	0.0776	0.0764	0.0749	0.0135	0.0721	DOTOL	0.0694	1,890.0
1.5		0.0558	0.0655	0.0647	0.0630	0.0618	0.0404	0.0594	0.0542	0.0571	0.0139
1.6		0.0548	6.0537	0.0536	0.0536	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
67.		0.0446	0.0436	0.0427	-0.0418	0,0409	1000	0.079/2	0.0384	0.0325	0.0347
1.0		9.6359	9,0151	0.0044	9.4334	0.0329	0.0212	0.0314	0.0507	0.0301	9.0294
LF.		6.0287	0.0281	9,9074	0.0268	0.0262	840346	0.0250	0.0044	0.0239	60239
2.0		8.02275	6/02322	0.02169	940116	402948	0.02819	9,01979	0.01123	640876	8.0182
2.1		0.01786	-0.01743	8.01700	0.004579	6.01418	0.00174	0.01539	0.01300	0.01453	60H2H
2.2		0.01390	0.00355	681321	0.01267	9/01255	9.04222	0.01191	0.01160	6.61130	0.01191
2.3		0.01072	0.01044	0.01017	0.00995	D.00964	0.00939	0.00914	0.00889	0.00856	0,0084
2.4		0.00820	0.00798	0.00776	0.60755	6.00754	0.00714	0.00695	0.00676	0.00637	0.00639
2.5		0.00621	0.00604	0.00387	0.00570	0.00554	0.00539	0.00123	0.00508	0.00454	0,00480
2.6		0.00466	0.00453	0.00440	0.00427	0.00415	0.00402	0.00391	6,00379	0.06368	0.000317
2.7		0.00347	0.00336	0.00326	0.00317	0.00307	6.00296	9.00289	0.00280	0.00272	0.00264
2.8		0.00256	0.00248	0.00240	0.00233	0.00226	0.00319	6.00212	0.00205	0.00199	0.00192
2.9		0.00187	0.00131	939175	0.00169	0.00164	0.00159	0.00154	0.00141	0.00144	0:00175
10		0.00135	0.00131	0.06136	0.00122	0,00118	0.00114	0.00111	0,80107	0.00104	5.00100
3.1	_	0.0009T	0.00094	0.00090	0.00087	0.00084	0.00082	6,000079	0.00076	0.000T4	0.00071
II N		0.00069	0.00066	0.00064	0.00662	0.00060	0.00058	0.00056	0.00054	0,00052	0.00050
3.3		0.00048	0.00047	0.00045	0.00643	0.00042	0.00040	0.00019	6.0003E	0.00036	0.00675
3.4		0.00034	0.00032	0.00031	0.00035	0.00029	0.00028	6.00027	6.00026	0.00025	0.06024
33		000023	0.00022	600022	0.00021	0.00630	0.00019	0.00019	0.50018	0.00087	500017
36		0.000016	0.000015	0.000015	0.00034	0.00014	0.00013	0.00013	0.00012	0.00013	00001
N		0.00001 F	0.00000	0.00000	0.00030	0.00009	0.500009	G-00000E	0.00006	930000	0.00008
3.8	\	0.00007	0.00007	@-0000pT	0.00006	0.00005	0.00004	0.00006	0.00605	0.00001	9,00003
3.9		0.00003	0.00001	6.00004	0.00004	0.00004	0.00004	0.00004	0.00004	8/00000	\$3000

If df>100, can refer Table A1. We don't have 4.137 so we use 3.99 instead. If t = 3.99, then p=0.00003x2=0.00006 4.137>3.99 If t=3.99, then p=0.00006 Therefore if t=4.137, p<0.00006.


3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.00114	0.00111	0.00107	0.00104	0.00100
3.1	0.00097	0.00094	0.00090	0.00087	0.00084	0.00082	0.00079	0.00076	0.00074	0.00071
3.2	0.00069	0.00066	0.00064	0.00062	0.00060	0.00058	0.00056	0.00054	0.00052	0.00050
3.3	0.00048	0.00047	0.00045	0.00043	0.00042	0.00040	0.00039	0.00038	0.00036	0.00035
3.4	0.00034	0.00032	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
3.3	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	81000.0	0.00017	0.00017
3.6	0.00016	0.00015	0.00015	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	80000.0	0.00008
3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003

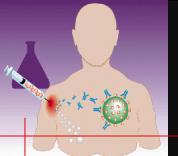
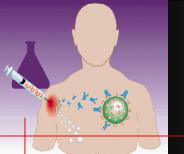

Table A3 Percentage points of the t distribution.

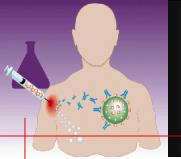
Table	Table A3 Percentage points of the 7 distribution.								
Adapte	ed from Ta	ble 7 of V	Vhite et a	£ (1979) v	ith perm	ission of	authors an	nd publish	MFS.
					ed P valu				
	0.25	1.0	0.05	0.025	0.01	0.005	0.0025	0.001	0.000
				Two-sid	ed P valu	ie.			
dΕ	0.5	0.2	0.1	0.05	0:02	0.01	0.005	0.002	0.001
1	1.00	3.08	6.31	12.71	31.82	63,66	127.32	318.31	636.62
2	0.K2	1.89	2.92	4.30	6.96	9.92	14.09	22.33	31.60
3	0.76	1.64	2.35	3.18	4.54	5.84	7.45	10.21	12.92
4	0.74	1.53	2.13	2.78	3.75	4.60	5.60	7.17	8.61
5	0.73	1.48	2.02	2.57	3.36	4.03	4,77	5.89	6.87
- 6	0.72	E.44	1.94	2.45	3.14	3.71	4.32	5.21	5.96
7	0.471	1.42	1.90	2.36	3.00	3.50	4.03	4.78	5.41
8	0.71	1.40	1.86	2.31	2.90	3.36	3.83	4.50	5.04
9	0.79	1.38	1.83	2.26	2.82	3.25	3.69	4.30	4.78
10	0.70	1.37	1.81	2.23	2.76	3.17	3.58	4.14	4.59
11	0.70	1.36	1.80	2.20	2.72	3.11	3.50	4.02	4.44
12	0.70	1.36	1.78	2.18	2.68	3.06	3.43	3.93	4.32
13	0.69	1.35	1.77	2.16	2.65	3.01	3.37	3.85	4.22
14	0.69	1.34	1.76	2.14	2.62	2.98	3.33	3.79	4.14
15	0.69	1.34	1.75	2.13	2.60	2.95	3.29	3.73	4.07
16	0.69	1.34	1.75	2.12	2.58	2.92	3.25	1.69	4.02
17	0.69	1.33	1.74	2.11	2.57	2.90	3.22	3.65	3.96
1.8	0.69	1.33	1.73	2.10	2.55	2.88	3.20	3.61	3.92
19	0.69	1.33	1.73	2.09	2.54	2.86	3.17	3.58	3.88
20	0.69	1.32	1.72	2.09	2.53	2.84	3.15	3.55	3.85
21	0.69	1.32	1.72	2.08	2.52	2.83	3.14	3.53	3.82
22	0.69	1.32	1.72	2.07	2.51	2.82	3.12	3.50	3.79
23	88.0	1.32	1.71	2.07	2.50	2.81	3.10	3.48	3,77
24	0.68	1.32	1.71	2.06	2.49	2.80	3.09	3.47	3,74
25	83.0	1.32	1.71	2.06	2.48	2.79	3.08	3.45	3.72
26	0.68	1.32	1.71	2.06	2,48	2,78	3.07	3.44	3.71
27	0.68	1.31	1.70	2.05	2.47	2.77	3.66	3.42	3.69
28	0.68	1.31	1.70	2.05	2.47	2.76	3.05	3.41	3.67
29	0.68	1.31	1.70	2.04	2.46	2.76	3.04	3.40	3.66
30	0.68	1.31	1.70	2.04	2.46	2.75	3.03	3.38	3.65
40	0.68	1.30	1.68	2.02	2.42	2.70	2,97	3.31	3.55
60	88.0	1.30	1.67	2.00	2.39	2.66	2.92	3.23	3.46
120	0.68	1.29	1.66	1.98	2.36	2.62	2.86	3.16	3.37
8	0.67	1.28	1.65	1.96	2.33	2.58	2.81	3:09	3.29

Or can refer to Table A3. We don't have df=98, so we use df=60 instead. t = 4.137 > 3.46


If t=3.46, p=0.001Therefore if t=4.137, p<0.001.

Conclusion

- Therefore p < 0.05, null hypothesis rejected.
- There is a significant difference of cholesterol level between hypertensive and normal patients.
- Hypertensive patients have a **significantly** higher cholesterol level (215±39) compared to normotensive (182±37) patients.

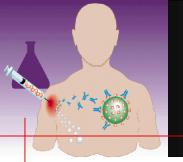


Exercise (try it)

- Comparing the mini test 1 (2012) results between UKM and ACMS students.
- The difference is 11.255
- H0: There is no difference of marks between UKM and ACMS students.
- n > 30, therefore use the first formula.

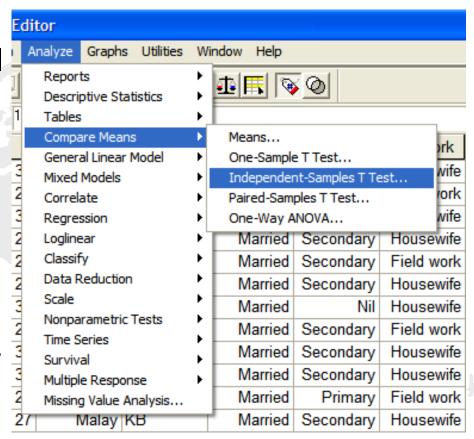
Group Statistics

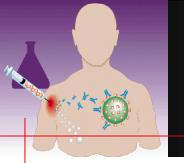
	group	N	Mean	Std. Deviation
minitest1	UKM	196	58.83	14.129
	AUCMS	70	47.57	14.289



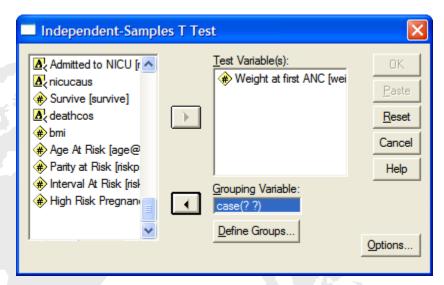
Exercise (answer)

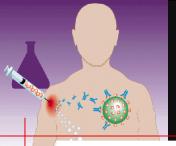
Independent Samples Test


	t-test for Equality of Means					
	t	df	Sig. (2-tailed)	Mean Difference		
minitest1 Equal variances assumed	5.704	264	0.00000003	11.255		


- Null hypothesis rejected
- There is a difference of marks between UKM and ACMS students. UKM marks higher than AUCMS

T-Test In SPSS

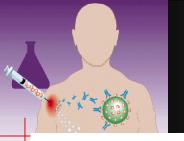

- For this exercise, we will be using the data from the CD, under Chapter 7, sga-bab7.sav
- This data came from a case-control study on factors affecting SGA in Kelantan.
- Open the data & select ->Analyse >Compare Means >Ind-Samp T Test...



T-Test in SPSS

- We want to see whether there is any association between the mothers' weight and SGA. So select the risk factor (weight2) into 'Test Variable' & the outcome (SGA) into 'Grouping Variable'.
- Now click on the 'Define Groups' button. Enter
 - 0 (Control) for Group 1 and
 - 1 (Case) for Group 2.
- Click the 'Continue' button & then click the 'OK' button.

Define Groups						
 <u>U</u>se specified values 	Continue					
Group <u>1</u> : 0	Cancel					
Group <u>2</u> : 1	Help					
C Cut point:						

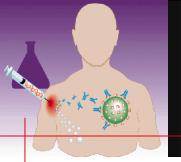


T-Test Results

Group Statistics

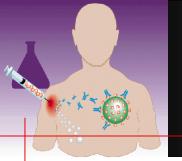
	SGA	N	Mean	Std. Deviation	Std. Error Mean
Weight at first ANC	Normal	108	58.666	11.2302	1.0806
	SGA	109	51.037	9.3574	.8963

- Compare the mean+sd of both groups.
 - Normal 58.7+11.2 kg
 - SGA 51.0<u>+</u> 9.4 kg
- Apparently there is a difference of weight between the two groups.

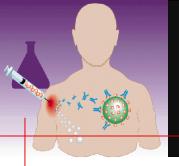


Results & Homogeneity of Variances

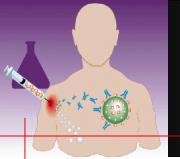
Independent Samples Test


Levene's Test for Equality of Variances			t-test for Equality of Means							
							Mean	Std. Error	95% Cor Interva Differ	l of the ence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Low er	Upper
Weight at first ANC	Equal variances assumed	1.862	.174	5.439	215	.000	7.629	1.4028	4.8641	10.3940
	Equal variances not assumed			5.434	207.543	.000	7.629	1.4039	4.8612	10.3969

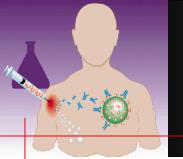
- Look at the p value of Levene's Test. If p is not significant then equal variances is assumed (use top row).
- If it is significant then equal variances is not assumed (use bottom row).
- So the t value here is 5.439 and p < 0.0005. The difference is significant. Therefore there is an association between the mothers weight and SGA.


How to present the result?

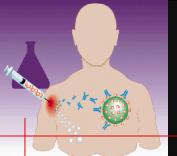
Group	N	Mean	test	p
Normal	108	58.7 <u>+</u> 11.2 kg	T test	10,0005
SGA	109	51.0 <u>+</u> 9.4	t = 5.439	<0.0005


Paired t-test

"Repeated measurement on the same individual"

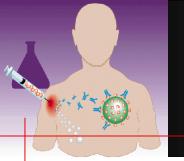

Paired T-Test

"Repeated measurement on the same individual"


Formula

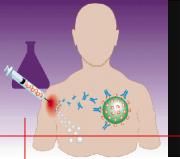
Examples of paired t-test

- Comparing the HAMD score between week 0 and week 6 of treatment with Sertraline for a group of psychiatric patients.
- Comparing the haemoglobin level amongst anaemic pregnant women after 6 weeks of treatment with haematinics.


Example

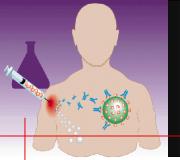
Paired Samples Statistics

		Mean	N	Std. Deviation
Pair	DHAMAWK0	13.9688	32	6.48315
1	DHAMAWK6	3.8125	32	4.39529


Paired Samples Test

		Paired Dif				
		Mean	Std. Deviation	t	df	Sig. (2-tailed)
Pair 1	DHAMAWK0 - DHAMAWK6	10.1563	6.75903	8.500	31	.000

Manual Calculation


- In the measurement of the systolic and diastolic blood pressures was done two consecutive times with an interval of 10 minutes. You want to determine whether there was any difference between those two measurements.
- ▶ H0:There is no difference of the systolic blood pressure during the first (time 0) and second measurement (time 10 minutes).

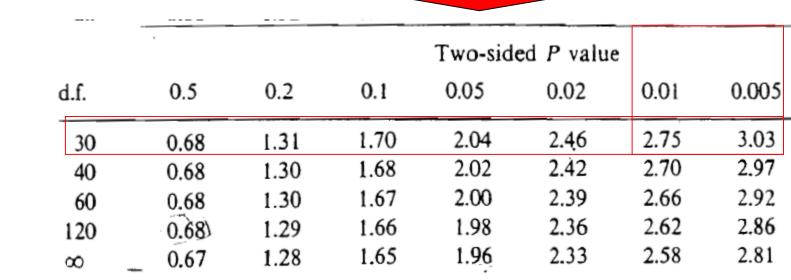
Calculation

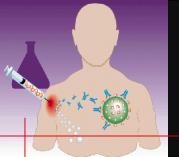
Calculate the difference between first & second measurement and square it.
Total up the difference and the square.

Nores	BPS1	BPS2	d	ď²
232	164	163	1.00	1.00
233	164	155	9.00	81.00
236	156	158	-2.00	4.00
237	147	131	16.00	256.00
239	186	178	8.00	64.00
241	170	160	10.00	100.00

Calculation

$$\sum d = 112$$
 $\sum d^2 = 1842$ $n = 36$

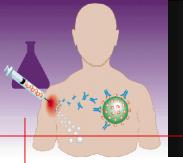

- Mean d = 112/36 = 3.11
- sd = $((1842-112^2/36)/35)^{0.5}$ sd = 6.53
- t = 3.11/(6.53/6)t = 2.858
- $df = n_p 1 = 36 1 = 35$.
- Refer to t table;


Table A3 Percentage points of the t distribution.

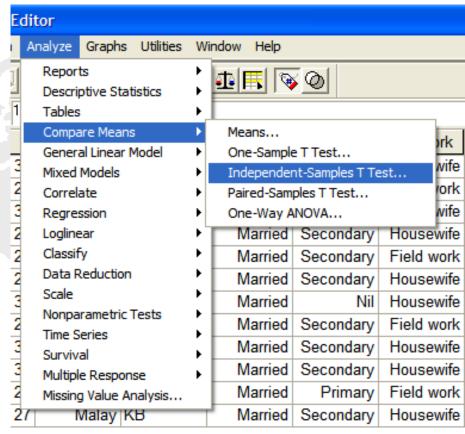
	0.25	1.0	0.05	One-sid 0.025	od P valu 0.01	0.005	0.0025	0.001	0.0005		
	-	Two-sided P value									
á.E.	0.5	0.2	0.1	0.05	0:02	0.01	0.005	0.002	0.061		
1	1.00	3.08	6.31	12.71	31.82	63,66	127.32	318.31	636.62		
2	0.K2	1.89	2.92	4.30	6.96	9.92	14.09	22.33	31.60		
3	0.76	1.64	2.35	3.18	4.54	5.84	7.45	10.21	12.92		
4	0.74	1.53	2.13	2.78	3.75	4.60	5.60	7.17	8.61		
5	0.73	1.48	2.02	2.57	3.36	4.03	4.77	5.89	6.87		
6	0.72	1.44	1.94	2.45	3.14	3.71	4.32	5.21	5.96		
7	0.71	1.42	1.90	2.36	3.00	3.50	4.03	4.78	5.41		
8	0.71	1.40	1.86	2.31	2.90	3.36	3.83	4.50	5.04		
9	0.79	1.38	1.83	2.26	2.82	3.25	3.69	4.30	4.78		
10	0.70	1.37	1.81	2.23	2.76	3.17	3.58	4.14	4.59		
11	0.70	1.36	1.80	2.20	2.72	3.11	3.50	4.02	4.44		
12	0.70	1.36	1.78	2.18	2.68	3.06	3.43	3.93	4.32		
13	0.69	1.35	1.77	2.16	2.65	3.01	3.37	3.85	4.22		
14	0.69	1.34	1.76	2.14	2.62	2.98	3.33	3.79	4.14		
15	0.69	1.34	1.75	2.13	2.60	2.95	3.29	3.73	4.07		
16	0.69	1.34	1.75	2.12	2.58	2.92	3.25	1.69	4.02		
17	0.69	1.33	1.74	2.11	2.57	2.90	3.22	3.65	3.96		
18	0.69	1.33	1.73	2.10	2.55	2.88	3.20	3.61	3.92		
19	0.69	1.33	1.73	2.09	2.54	2.86	3.17	3.58	3.88		
20	0.69	1.32	1.72	2.09	2.53	2.84	3.15	3.55	3.85		
21	0.69	1.32	1.72	2.06	2.52	2.83	3.14	3.53	3.82		
22	0.69	1.32	1.72	2.07	2.51	2.82	3.12	3.50	3.79		
23	0.68	1.32	1.71	2.07	2.50	2.81	3.10	3.48	3,77		
24	0.68	1.32	1.71	2.06	2.49	2.80	3.09	3.47	3.74		
25	0.68	1.32	1.71	2.06	2.48	2.79	3.08	3.45	3.72		
26	0.68	1.32	1.71	2.06	2.48	2.78	3.07	3,44	3.71		
27	0.68	1.31	1.70	2.05	2.47	2.77	3.06	3.42	3.69		
28	0.68	1.31	1.70	2.05	2.47	2.76	3.05	3.41	3.67		
29	0.68	131	1.70	2.04	2.46	2.76	3.04	3.40	3.66		
30	0.68	1.31	1.70	2.04	2.46	2.75	3.03	3.38	3.65		
40	0.68	1.30	1.68	2.02	2.42	2.70	2.97	3.31	3.55		
60	0.68	1.30	1.67	2.00	2.39	2.66	2.92	3.23	3.46		
120	0.68	1.29	1.66	1.98	2.36	2.62	2.86	3.16	3.37		
_	0.67	1.28	1.65	1.96	2.33	2.58	2.81	3.09	1.29		

Refer to Table A3.

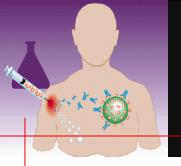
We don't have df=35,
so we use df=30 instead.
t = 2.858, larger than 2.75
(p=0.01) but smaller than 3.03
(p=0.005). 3.03>t>2.75
Therefore if t=2.858,
0.005<p<0.01.



Conclusion

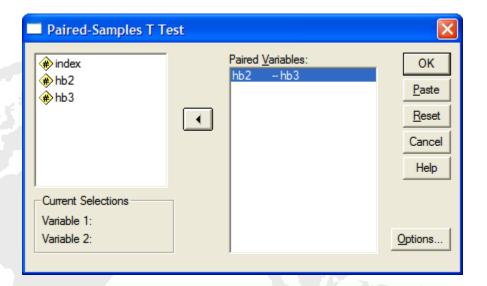

with t = 2.858, 0.005Therefore <math>p < 0.01. Therefore p < 0.05, null hypothesis rejected.

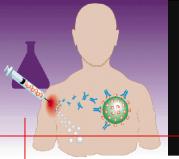
Conclusion: There is a significant difference of the systolic blood pressure between the first and second measurement. The mean average of first reading is significantly higher (by 3.11 ±6.53) compared to the second reading.



Paired T-Test In SPSS

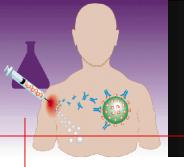
- For this exercise, we will be using the data from the CD, under Chapter 7, sgapair.sav
- This data came from a controlled trial on haematinic effect on Hb.
- Open the data & select ->Analyse
 - >Compare Means>Paired-Samples T




Test...

Paired T-Test In SPSS

- We want to see whether there is any association between the prescription on haematinic to anaemic pregnant mothers and Hb.
- We are comparing the Hb before & after treatment. So pair the two measurements (Hb2 & Hb3) together.
- Click the 'OK' button.

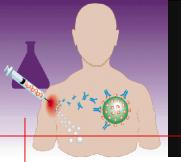


Paired T-Test Results

Paired Samples Statistics

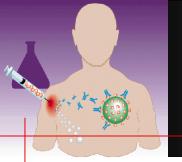
					Std. Error
		Mean	N	Std. Deviation	Mean
Pair	HB2	10.247	70	.3566	.0426
1	HB3	10.594	70	.9706	.1160

This shows the mean & standard deviation of the two groups.

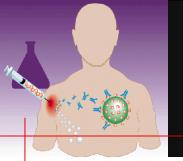


Paired T-Test Results

Paired Samples Test

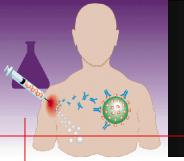

		Paired Differences							
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Low er	Upper	t	df	Sig. (2-tailed)
Pair 1	HB2 - HB3	347	.9623	.1150	577	118	-3.018	69	.004

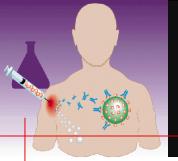
- This shows the mean difference of Hb before & after treatment is only 0.347 g%.
- Yet the t=3.018 & p=0.004 show the difference is statistically significant.



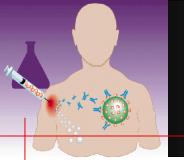
How to present the result?

Group	N	Mean D (Diff.)	Test	р
Before treatment (HB2) vs After treatment (HB3)	70	0.35 <u>+</u> 0.96	Paired T- test t = 3.018	0.004

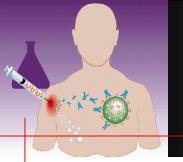



ANOVA – Analysis of Variance

- Extension of independent-samples t test
- Compares the means of groups of independent observations
 - Don't be fooled by the name. ANOVA does not compare variances.
- Can compare more than two groups


One-Way ANOVA F-Test

- Tests the equality of 2 or more population means
- Variables
 - One nominal scaled independent variable
 - 2 or more treatment levels or classifications
 (i.e. Race; Malay, Chinese, Indian & Others)
 - One interval or ratio scaled dependent variable (i.e. weight, height, age)
- Used to analyse completely randomized experimental designs


Examples

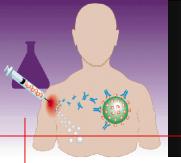
- Comparing the blood cholesterol levels between the bus drivers, bus conductors and taxi drivers.
- Comparing the mean systolic pressure between Malays, Chinese, Indian & Others.

One-Way ANOVA F-Test Assumptions

- Randomness & independence of errors
 - Independent random samples are drawn
- Normality
 - Populations are normally distributed
- Homogeneity of variance
 - Populations have equal variances

Example

Descriptives


Birth w eight

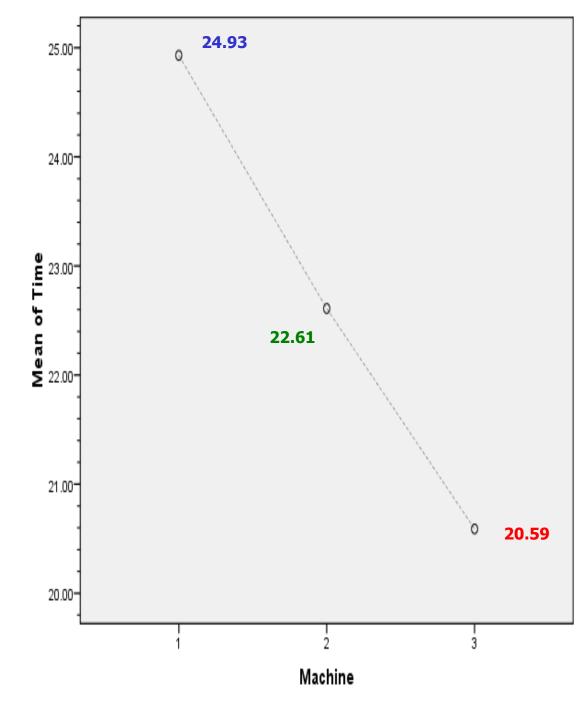
	N	Mean	Std. Deviation	Minimum	Maximum
Housew ife	151	2.7801	.52623	1.90	4.72
Office w ork	23	2.7643	.60319	1.60	3.96
Field w ork	44	2.8430	.55001	1.90	3.79
Total	218	2.7911	.53754	1.60	4.72

ANOVA

Birth w eight

	Sum of Squares	df	Mean Square	F	Sig.
Betw een Groups	.153	2	.077	.263	.769
Within Groups	62.550	215	.291		
Total	62.703	217			

Manual Calculation

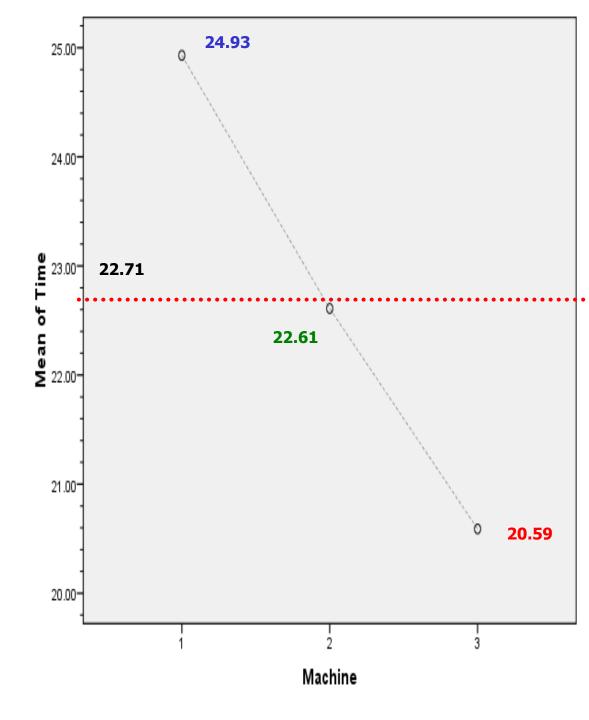

ANOVA

Example: Time To Complete Analysis

45 samples were analysed using 3 different blood analyser (Mach1, Mach2 & Mach3).

15 samples were placed into each analyser.

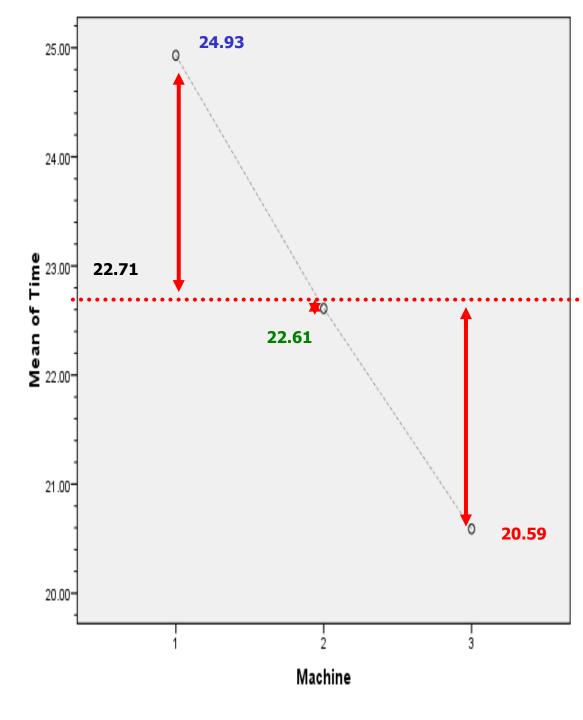
Time in seconds was measured for each sample analysis.



Example: Time To Complete Analysis

The overall mean of the entire sample was 22.71 seconds.

This is called the "grand" mean, and is often denoted by $\overline{\overline{\chi}}$.


If H₀ were true then we'd expect the group means to be close to the grand mean.

Example: Time To Complete Analysis

The ANOVA test is based on the combined distances from $\overline{\overline{X}}$.

If the combined distances are large, that indicates we should reject H₀.

The Anova Statistic

To combine the differences from the grand mean we

- Square the differences
- Multiply by the numbers of observations in the groups
- Sum over the groups

$$SSB = 15\left(\overline{X}_{Mach1} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{Mach2} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{Mach3} - \overline{\overline{X}}\right)^2$$

where the \overline{X}_* are the group means.

"SSB" = Sum of Squares Between groups

The Anova Statistic

To combine the differences from the grand mean we

- Square the differences
- Multiply by the numbers of observations in the groups
- Sum over the groups

$$SSB = 15\left(\overline{X}_{Mach1} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{Mach2} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{Mach3} - \overline{\overline{X}}\right)^2$$

where the \overline{X}_* are the group means.

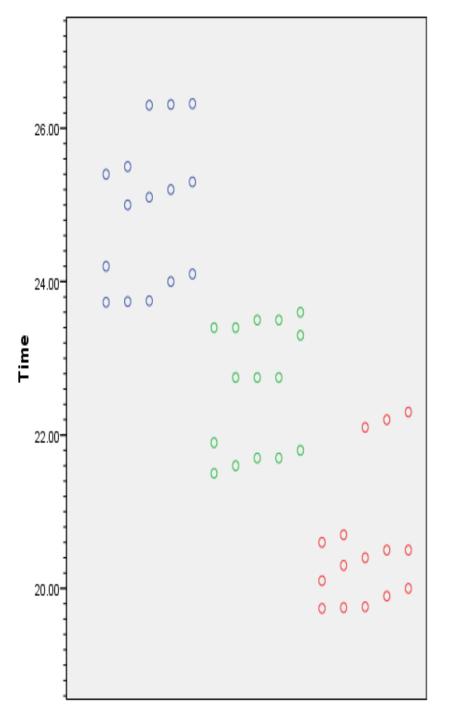
"SSB" = Sum of Squares Between groups

Note: This looks a bit like a variance.

Sum of Squares Between

$$SSB = 15\left(\overline{X}_{Mach1} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{Mach2} - \overline{\overline{X}}\right)^2 + 15\left(\overline{X}_{Mach3} - \overline{\overline{X}}\right)^2$$

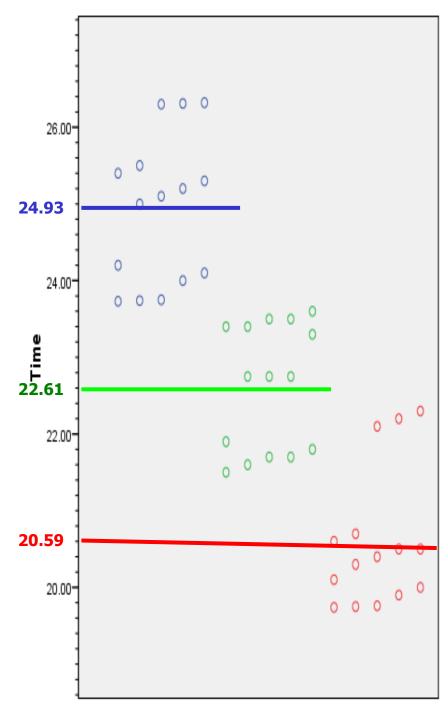
- Grand Mean = 22.71
- Mean Mach1 = 24.93; $(24.93-22.71)^2=4.9284$
- Mean Mach2 = 22.61; $(22.61-22.71)^2=0.01$
- Mean Mach3 = 20.59; $(20.59-22.71)^2=4.4944$
- SSB = (15*4.9284)+(15*0.01)+(15*4.4944)
- SSB = 141.492


How big is big?

- ▶ For the Time to Complete, *SSB* = 141.492
- ▶ Is that big enough to reject H₀?
- As with the *t* test, we compare the statistic to the variability of the individual observations.

In ANOVA the variability is estimated by the Mean Square Error, or MSE The Mean Square Error is a measure of the variability after the group effects have been taken into account.

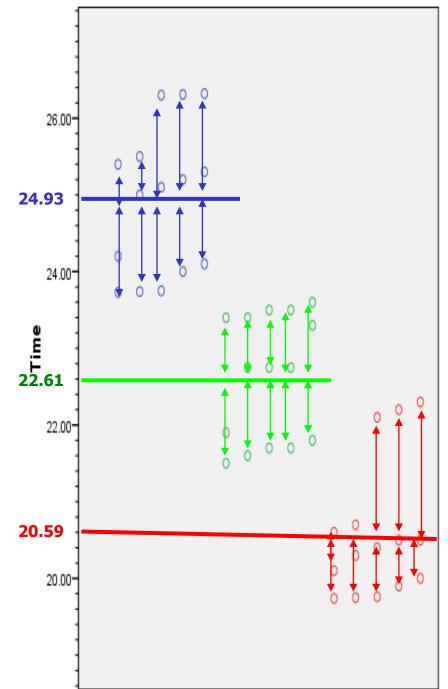
$$MSE = \frac{1}{N - K} \sum_{j} \sum_{i} \left(x_{ij} - \overline{X}_{j} \right)^{2}$$


where x_{ij} is the i^{th} observation in the j^{th} group.

Machine

$$MSE = \frac{1}{N - K} \sum_{j} \sum_{i} \left(x_{ij} - \overline{X}_{j} \right)^{2}$$

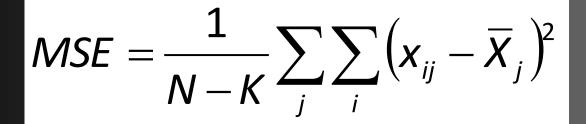
where x_{ij} is the i^{th} observation in the j^{th} group.

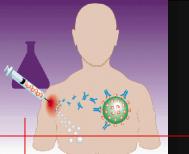

Machine

O1 O2

03

The Mean Square Error is a measure of the variability after the group effects have been taken into account.


$$MSE = \frac{1}{N - K} \sum_{j} \sum_{i} \left(x_{ij} - \overline{X}_{j} \right)^{2}$$


Machine

01 02

ŏ

Mach1	(x-mean)^2	Mach2	(x-mean)^2	Mach3	(x-mean)^2
23.73	1.4400	21.5	1.2321	19.74	0.7225
23.74	1.4161	21.6	1.0201	19.75	0.7056
23.75	1.3924	21.7	0.8281	19.76	0.6889
24.00	0.8649	21.7	0.8281	19.9	0.4761
24.10	0.6889	21.8	0.6561	20	0.3481
24.20	0.5329	21.9	0.5041	20.1	0.2401
25.00	0.0049	22.75	0.0196	20.3	0.0841
25.10	0.0289	22.75	0.0196	20.4	0.0361
25.20	0.0729	22.75	0.0196	20.5	0.0081
25.30	0.1369	23.3	0.4761	20.5	0.0081
25.40	0.2209	23.4	0.6241	20.6	0.0001
25.50	0.3249	23.4	0.6241	20.7	0.0121
26.30	1.8769	23.5	0.7921	22.1	2.2801
26.31	1.9044	23.5	0.7921	22.2	2.5921
26.32	1.9321	23.6	0.9801	22.3	2.9241
SUM	12.8380		9.4160		11.1262

$$MSE = \frac{1}{N - K} \sum_{j} \sum_{i} (x_{ij} - \overline{X}_{j})^{2}$$

- Note that the variation of the means (141.492) seems quite large (more likely to be significant???) compared to the variance of observations within groups (12.8380+9.4160+11.1262=33.3802).
- MSE = 33.3802/(45-3) = 0.7948

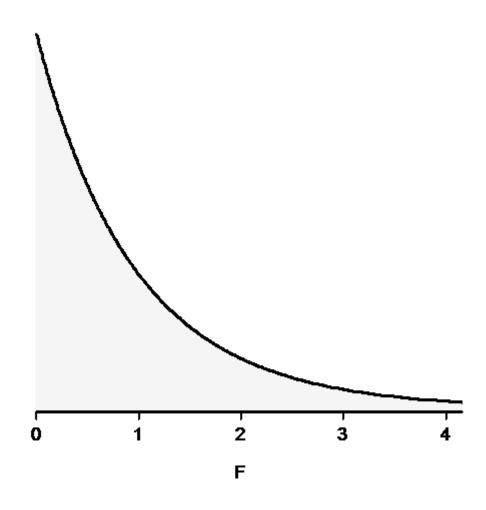
Notes on MSE

- If there are only two groups, the MSE is equal to the pooled estimate of variance used in the equal-variance t test.
- ANOVA assumes that all the group variances are equal.
- Other options should be considered if group variances differ by a factor of 2 or more.
- (12.8380 ~ 9.4160 ~ 11.1262)

ANOVA F Test

▶ The ANOVA F test is based on the F statistic

$$F = \frac{SSB/(K-1)}{MSE}$$

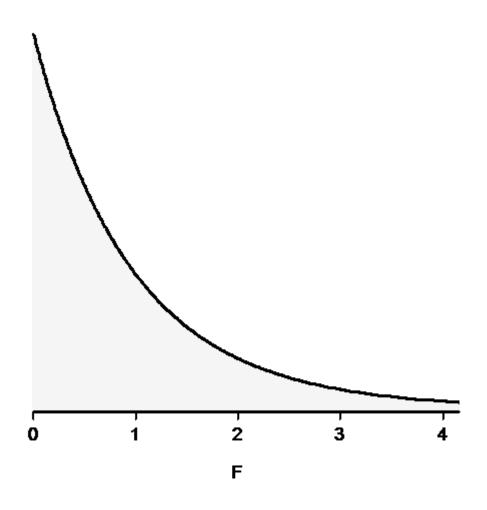

where *K* is the number of groups.

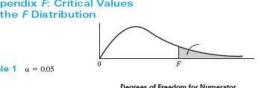
Under H₀ the F statistic has an "F" distribution, with K-1 and N-K degrees of freedom (N is the total number of observations)

Time to Analyse: F test p-value

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

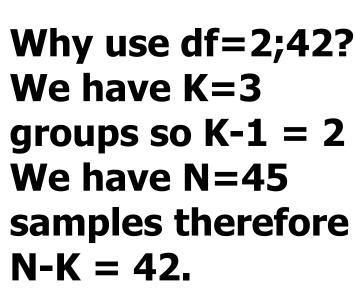
Time to Analyse: F test p-value

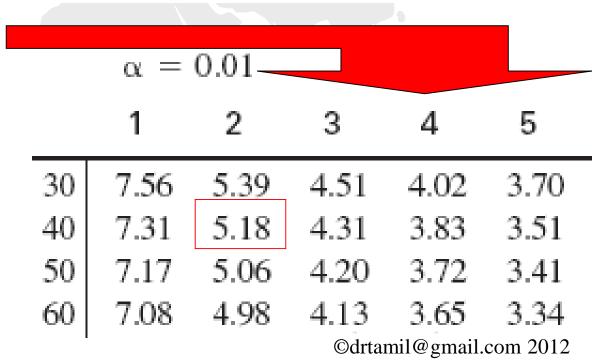

To get a p-value we compare our *F* statistic to an F(2, 42) distribution.


In our example

$$F = \frac{141.492/2}{33.3802/42} = 89.015$$

We cannot draw the line since the F value is so large, therefore the p value is so small!!!!!

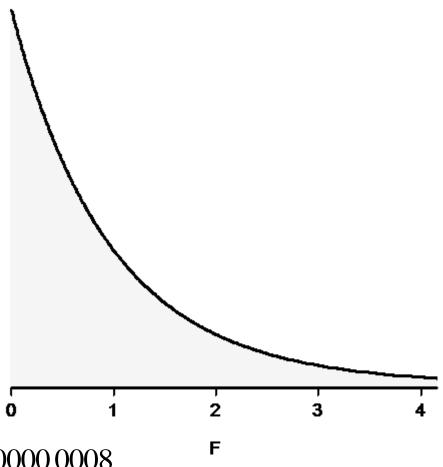

F(2,42) distribution



							Degr	ees of	Freed	om for	Nume	rator					
		1	2	3	4	5	6	7	8	9	10	15	20	25	30	40	
	1	161.4	199.5	215.8	224.8	230.0	233.8	236.5	238.6	240.1	242.1	245.2	248.4	248.9	250.5	250.8	
	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.43	19.44	19.46	19.47	19.48	
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.66	8.63	8.62	8.59	
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.77	5.75	5.72	
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	456	4.52	4.50	4.46	
	6	5.99	5.14	4.76	4.53	4.39	4.28	421	4.15	4.10	4.06	3.94	3.87	3.83	3.81	3.77	
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51	3.44	3.40	3.38	3.34	
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3.15	3.11	3.08	3.04	
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2.89	2.86	2.83	
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85	2.77	2.73	2.70	2.66	
š	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.72	2.65	2.60	2.57	2.53	
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.62	2.54	2.50	2.47	2.43	
į	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.53	2.46	2.41	2.38	2.34	
É	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.46	2.39	2.34	2.31	2.27	
à	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40	2.33	2.28	2.25	2.20	
2	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.35	2.28	2.23	2.19	2.15	
•	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.31	2.23	2.18	2.15	2.10	
ź	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.27	2.19	2.14	2.11	2.06	
5	19	4.38	3.52	3.13	2.90	2.74	2.63	254	2.48	2.42	2.38	2.23	2.16	2.11	2.07	2.03	
3	20	4.35	3.49	3.10	2.87	2.71	2.60	251	2.45	2.39	2.35	2.20	2.12	2.07	2.04	1.99	
6	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.15	2.07	2.02	1.98	1.94	
6	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.11	2.03	1.97	1.94	1.89	
6	26	4.23	3.37	2.98	2.74	2.50	2.47	2.30	2.32	2.27	2.22	2.07	1.99	1.94	1.90	1.85	
•	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.04	1.96	1.91	1.87	1.82	
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.01	1.93	1.88	1.84	1.79	
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	1.92	1.84	1.78	1.74	1.69	
	50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.87	1.78	1.73	1.69	1.63	900
`	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.84	1.75	1.69	1.65	1.59	1.
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.75	166	1.60	1.55	1.50	1.
	200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.72	1.62	1.56	1.52	1.46	1.
	500	3.86	3.01	2.62	2.39	2.23	2.12	2.03	1.96	1.90	1.85	1.69	159	1.53	1.48	1.42	1.
	1000	3.85	3.01	2.61	2.38	2.22	2.11	2.02	1.95	1.89	1.84	1.68	1.58	1.52	1.47	1.41	1.

Refer to F Dist. Table (α =0.01). We don't have df=2;42, so we use df=2;40 instead. F = 89.015, larger than 5.18 (p=0.01) Therefore if F=89.015, p<0.01.

Time to Analyse: F test p-value


To get a p-value we compare our *F* statistic to an F(2, 42) distribution.

In our example

$$F = \frac{141.492/2}{33.3802/42} = 89.015$$

The p-value is really

F(2,42) distribution

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	141.492	2	40.746	89.015	p<0.01
Within Groups	33.380	42	.795		
Total	174.872	44			

Results are often displayed using an ANOVA Table

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	141.492	2	40.746	89.015	p<0.01
Within Groups	33.380	42	.795		
Total	174.872	44			

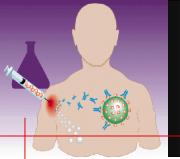
Pop Quiz!: Where are the following quantities presented in this table?

Sum of Squares Mean Square F Statistic p value Between (SSB) Error (MSE)

Results are often displayed using an ANOVA Table

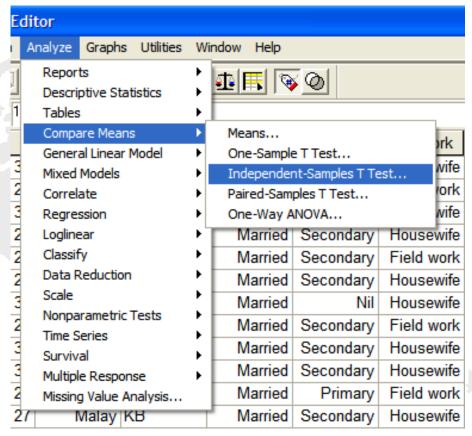
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	141.492	2	40.746	89.015	p<0.01
Within Groups	3 3.380	42	.795		
Total	174.872	44			

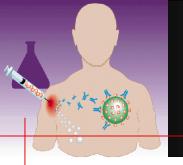
Sum of Squares Between (SSB) Mean Square Error (*MSE*)


F Statistic

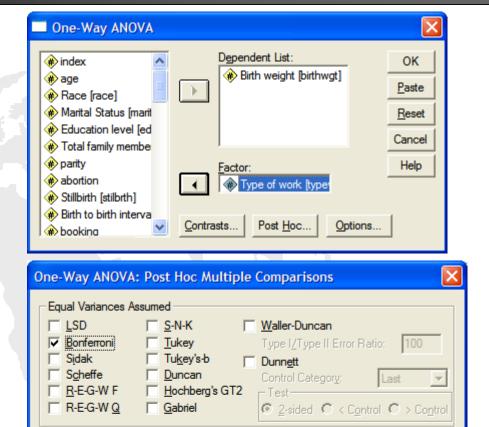
p value

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	141.492	2	40.746	89.015	p<0.01
Within Groups	33.380	42	.795		
Total	174.872	44			
Sum of Squares Between (<i>SSB</i>)		Mean Sq Error (<i>M</i> S	·	tatistic	p value


	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	141.492	2	40.746	89.015	p<0.01
Within Groups	33.380	42	.795		
Total	174.872	44			
Sum of S Betweer	•	Mean Sq Error (<i>M</i> S		Statistic	p value


	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	141.492	2	40.746	89.015	p<0.01
Within Groups	33.380	42	.795		
Total	174.872	44			
Sum of S Betweer	•	Mean Sq Error (<i>M</i> 3	!	Statistic	p value

ANOVA In SPSS

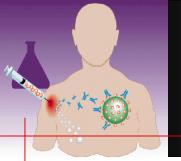

- For this exercise, we will be using the data from the CD, under Chapter 7, sga-bab7.sav
- This data came from a case-control study on factors affecting SGA in Kelantan.
- Open the data & select ->Analyse>Compare Means>One-WayANOVA...

ANOVA in SPSS

- We want to see whether there is any association between the babies' weight and mothers' type of work. So select the risk factor (typework) into 'Factor' & the outcome (birthwgt) into 'Dependent'.
- Now click on the 'Post Hoc' button. Select Bonferonni.
- Click the 'Continue' button & then click the 'OK' button.
- Then click on the 'Options' button.

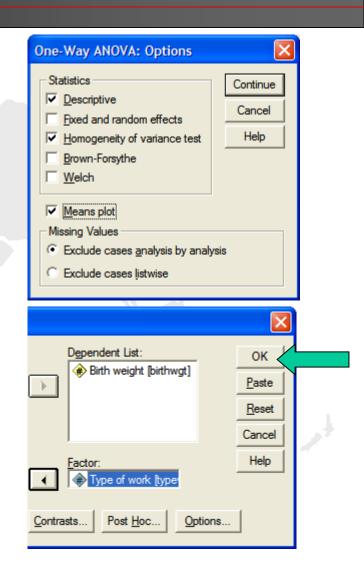
Tamhane's T2 ☐ Dunnett's T3 ☐ Games-Howell ☐ Dunnett's C

Continue


Equal Variances Not Assumed

Significance level: .05

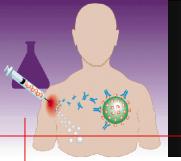
©drtami1@gmai1.com 2012


Cancel

Help

ANOVA in SPSS

- Select 'Descriptive', 'Homegeneity of variance test' and 'Means plot'.
- Click 'Continue' and then 'OK'.


ANOVA Results

Descriptives

Birth weight

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Low er Bound	Upper Bound	Minimum	Maximum
Housew ife	151	2.7801	.52623	.04282	2.6955	2.8647	1.90	4.72
Office w ork	23	2.7643	.60319	.12577	2.5035	3.0252	1.60	3.96
Field w ork	44	2.8430	.55001	.08292	2.6757	3.0102	1.90	3.79
Total	218	2.7911	.53754	.03641	2.7193	2.8629	1.60	4.72

- Compare the mean+sd of all groups.
- Apparently there are not much difference of babies' weight between the groups.

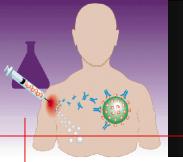
Results & Homogeneity of Variances

Test of Homogeneity of Variances

Birth w eight

Birtir Weight							
Lev ene Statistic	df 1	df2	Sia.				
.757	2	215	.470				
	_		1				

Look at the p value of Levene's Test. If p is not significant then equal variances is assumed.


ANOVA Results

ANOVA

Birth w eight

	Sum of Squares	df	Mean Square	F	Sig.
Betw een Groups	.153	2	.077	.263	.769
Within Groups	62.550	215	.291		
Total	62.703	217			

So the F value here is 0.263 and p =0.769. The difference is not significant. Therefore there is no association between the babies' weight and mothers' type of work.

How to present the result?

Type of Work	Mean <u>+</u> sd	Test	р
Office	2.76 <u>+</u> 0.60		
Housewife	2.78 <u>+</u> 0.53	ANOVA F = 0.263	0.769
Farmer	2.84 <u>+</u> 0.55		