### Odds Is Not The Same As Probability

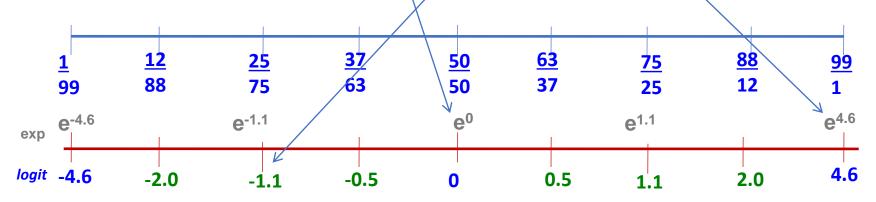
| High Chol | Normal | Total | Prob | Odds | log n odds |  |
|-----------|--------|-------|------|------|------------|--|
| 10        | 90     | 100   | 0.1  | 0.11 | -2.19722   |  |
| 20        | 80     | 100   | 0.2  | 0.25 | -1.38629   |  |
| 30        | 70     | 100   | 0.3  | 0.43 | -0.8473    |  |
| 40        | 60     | 100   | 0.4  | 0.67 | -0.40547   |  |
| 50        | 50     | 100   | 0.5  | 1.00 | 0          |  |
| 60        | 40     | 100   | 0.6  | 1.50 | 0.405465   |  |
| 70        | 30     | 100   | 0.7  | 2.33 | 0.847298   |  |
| 80        | 20     | 100   | 0.8  | 4.00 | 1.386294   |  |
| 90        | 10     | 100   | 0.9  | 9.00 | 2.197225   |  |

©drtamil@gmail.com - 2020

## Explaining the 'logit' scale

"Measurement is defined as the assignment of numerals to objects or events according to rules."

("On the Theory of Scales of Measurement"; S.S. Stevens, 1946)


e.g. With 100 patients, if 99 has high cholesterol and only 1 has normal cholestrol. Odds of 99/1 is a logit of 4.5951.

If 50 has high cholesterol and 50 has normal cholestrol.

Odds of 50/50 is a logit of 0,

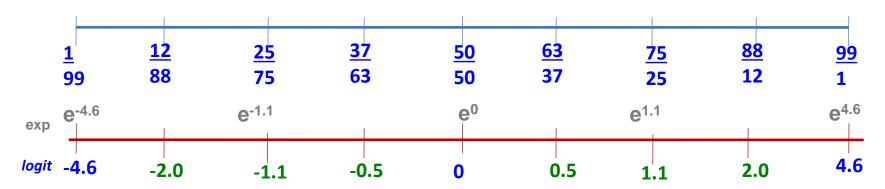
If 25 has high cholesterol and 75 has normal cholestrol.

Odds of 25/75 is a logit of -1.0986.



The above are for samples of one hundred. What if we have more?

## Explaining the 'logit' scale


"Numerals can be assigned under different rules leads to different kind of scales & different kinds of measurement."

("On the Theory of Scales of Measurement"; S.S. Stevens, 1946)

e.g. With 1000 patients, if 999 has high cholesterol and only 1 has normal cholestrol. Odds of 999/1 is a logit of 6.9068.

With 10000 patients, if 9999 has high cholesterol and 1 has normal cholestrol. Odds of 9999/1 is a logit of 9.2102.

With 100000 patients, if 99999 has high cholesterol and 1 has normal cholestrol. Odds of 99999/1 is a logit of 11.5129.



So if you have a large population, and a large proportion was affected, you can have a logit value larger than 4.6.

# Calculate Simple Logistic Regression Manually

|        | High Chol | Normal |     |
|--------|-----------|--------|-----|
| Male   | 41        | 51     | 92  |
| Female | 15        | 93     | 108 |
| Total  | 56        | 144    | 200 |

- Odds Male have High Chol = 41/51
- Odds Female have High Chol = 15/93
- SLogR High Chol for Sex = log n ((41/51)/(15/93))= 1.6063

## SLogR Using SPSS

#### sex \* cholesterol (Banded) Crosstabulation

#### Count

|       |        | cholestero |      |       |  |
|-------|--------|------------|------|-------|--|
|       |        | <= 6.2     | 6.3+ | Total |  |
| sex   | female | 93         | 15   | 108   |  |
|       | male   | 51         | 41   | 92    |  |
| Total |        | 144        | 56   | 200   |  |

#### Chi-Square Tests

|                    | Value               | df | Asymp. Sig.<br>(2-sided) |
|--------------------|---------------------|----|--------------------------|
| Pearson Chi-Square | 23.190 <sup>a</sup> | 1  | .000001                  |
| N of Valid Cases   | 200                 |    |                          |

 a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 25.76.

#### Variables in the Equation

|          |          |        |      |        |    |      |        | 95% C.I.for EXP(B) |       |
|----------|----------|--------|------|--------|----|------|--------|--------------------|-------|
|          |          | В      | S.E. | Wald   | df | Sig. | Exp(B) | Lower              | Upper |
| Step 1 a | sex(1)   | 1.606  | .348 | 21.251 | 1  | .000 | 4.984  | 2.518              | 9.867 |
|          | Constant | -1.825 | .278 | 42.999 | 1  | .000 | .161   |                    |       |

a. Variable(s) entered on step 1: sex.

## Same Answer

SLogR High Chol for Sex = log n ((41/51)/(15/93))= 1.6063